

TEMPORALLY COHERENT 4D RECONSTRUCTION OF COMPLEX DYNAMIC SCENES

Armin Mustafa, Hansung Kim, Jean-Yves Guillemaut, Adrian Hilton

PROBLEM STATEMENT

- Reconstruct complex dynamic scenes.
- Multi-view, wide-baseline and moving handheld cameras.
- Unknown background, structure and segmentation.

PROBLEMS IN EXISTING METHODS

- Requires accurate segmentation of foreground
- Known background and structure

Framework

- No prior
- Moving cameras

- Salient object
 - identification
- Temporal coherence
- 4D scene reconstruction and segmentation

Multi-view data

7

Initial coarse reconstruction and refinement

A. Mustafa, H. Kim, J-Y. Guillemaut and A. Hilton General Dynamic Scene Reconstruction from Multiple View Video. ICCV 2015

INITIAL COARSE RECONSTRUCTION

A. Mustafa, H. Kim, J-Y. Guillemaut and A. Hilton General Dynamic Scene Reconstruction from Multiple View Video. ICCV 2015

TEMPORAL COHERENCE :

Sparse to dense reconstruction and refinement:

- Joint segmentation and reconstruction
- Optimized based on graph cuts

J-Y. Guillemaut and A. Hilton Joint Multi-Layer Segmentation and Reconstruction for Free-Viewpoint Video Applications. IJCV 2011

REFINEMENT: SHAPE

$$E(l,d) = \alpha E_{data} (d) + \beta E_{smooth}(l) + \gamma E_{color}(l) + \eta E_{contrast}(l,d)$$

where l is the label and d is the depth

• Error tolerant photo-consistency is combined with edge information to refine the depth.

REFINEMENT: SHAPE

 $E(l,d) = \alpha E_{data} (d) + \beta E_{smooth}(l) + \gamma E_{color}(l) + \eta E_{contrast}(l,d)$

where l is the label and d is the depth

• Smoothness is to ensure consistency of depth between neighbouring pixels.

 $E(l,d) = \alpha E_{data} (d) + \beta E_{smooth}(l) + \gamma E_{color}(l) + \eta E_{contrast}(l,d)$

where l is the label and d is the depth

 Color and contrast information combined with geodesic star-convexity is used to refine segmentation.

Background and Foreground

GMM models

Geodesic star convexity(GSC):

• Shape constraints improves segmentation

V. Gulshan, C. Rother , A. Criminisi, A. Blake and A. Zisserman Geodesic Star Convexity for Interactive Image Segmentation. CVPR 2010

Geodesic star convexity:

Geodesic distances instead of Euclidean

V. Gulshan, C. Rother , A. Criminisi, A. Blake and A. Zisserman Geodesic Star Convexity for Interactive Image Segmentation. CVPR 2010

 $E(l,d) = \alpha E_{data} (d) + \beta E_{smooth}(l) + \gamma E_{color}(l) + \eta E_{contrast}(l,d)$

where l is the label and d is the depth

Subject to GSC

• Geodesic star-convexity to refine segmentation automatically.

With GSC

Without GSC

Geodesic star convexity:

REFINEMENT:

Temporal coherence:

 $E(l,d) = \alpha E_{data} (d) + \beta E_{smooth}(l) + \gamma E_{color}(l) + \eta E_{contrast}(l,d)$

REFINEMENT:

Temporal coherence:

$E(l,d) = \alpha E_{data} (d) + \beta E_{smooth}(l) + \gamma E_{color}(l) + \eta E_{contrast}(l,d)$

Method	No Priors	Temporal coherence	Joint refinement (Segmentation)
Furukawa PAMI 2010	\checkmark	X	X
Guillemaut 3DV 2012	X	\checkmark	\checkmark
Mustafa ICCV 2015	\checkmark	X	\checkmark
Proposed	\checkmark	\checkmark	\checkmark

A. **Mustafa**, H. Kim, J-Y. Guillemaut and A. Hilton General Dynamic Scene Reconstruction from Multiple View Video. ICCV 2015 J-Y. **Guillemaut** and A. Hilton Space-time joint multi-layer segmentation and depth estimation. 3DIMPVT 2012 Y. **Furukawa** and J. Ponce Accurate, Dense and Robust Multi-View Stereopsis. PAMI 2010

RESULTS – SEGMENTATION:

A. **Mustafa**, H. Kim, J-Y. Guillemaut and A. Hilton General Dynamic Scene Reconstruction from Multiple View Video. ICCV 2015 J-Y. **Guillemaut** and A. Hilton Space-time joint multi-layer segmentation and depth estimation. 3DIMPVT 2012

RESULTS - RECONSTRUCTION:

Juggler dataset

RESULTS - RECONSTRUCTION:

RESULTS – 4D RECONSTRUCTION:

RESULTS – TEMPORAL COHERENCE :

RESULTS – COMPUTATION TIME:

Dataset	Furukawa (s)	Guillemaut (s)	Mustafa (s)	Ours (s)
Dance1	326	493	295	254
Magician	311	608	377	325
Odzemok	381	598	394	363
Office	339	533	347	291
Juggler	394	634	411	378
Dance2	312	432	323	278

CONCLUSIONS

- An automatic framework for temporally coherent 4D reconstruction.
- Sparse to dense temporal coherence to improve quality.
- Joint segmentation and reconstruction refinement using GSC.

FUTURE WORK

- Extending 4D reconstruction to single view video.
- Joint semantic segmentation using recognition.
- Handle crowded dynamic scenes

THANK YOU!

Temporally coherent 4D reconstruction of complex dynamic scenes

Armin Mustafa, Hansung Kim, Jean-Yves Guillemaut, Adrian Hilton

http://cvssp.org/projects/4d/4DRecon/

Poster number : 12

