
1

Signal Processing on Graphs
SpaRTaN-MacSeNet Spring School

Pierre Vandergheynst
Swiss Federal Institute of Technology

April is Autism Awareness Month: https://www.autismspeaks.org/wordpress-tags/autism-awareness-month

Low-Pass F
ilteri

ng Strike
s Back!

https://www.autismspeaks.org/wordpress-tags/autism-awareness-month

Signal Processing on Graphs
3

Irregular Data Domains

Social Networks

Energy Networks

Transportation Networks
Biological Networks

4

Some Typical Processing Problems
5

Semi-Supervised Learning

Analysis / Information Extraction

Denoising

Compression / Visualization

Earth data source: Frederik Simons

Many interesting new contributions with a SP perspective
[Coifman, Maggioni, Kolaczyk, Ortega, Ramchandran, Moura, Lu, Borgnat]
or IP perspective [ElMoataz, Lezoray]
See review in 2013 IEEE SP Mag

Outline
l Introduction:
- Graphs and elements of spectral graph theory, with

emphasis on functional calculs
l Kernel Convolution:
- Localization, filtering, smoothing and applications

l An application to spectral clustering that unifies
some of the themes you’ve heard of during the
workshop: machine learning, compressive sensing,
optimisation algorithms, graphs

6

7

Elements of Spectral Graph Theory

Reference: F. Chung, Spectral Graph Theory

Definitions
8

A graph G is given by a set of vertices and «relationships »
between them encoded in edges G = (V,E)
A set V of vertices of cardinality |V| = N
A set E of edges: e 2 E, e = (u, v) with u, v 2 V

Directed edge: e = (u, v), e0 = (v, u) and e 6= e0

Undirected edge: e = (u, v), e0 = (v, u) and e = e0

A graph is undirected if it contains only undirected edges

A weighted graph has an associated non-negative weight function:
w : V ⇥ V ! R+ (u, v) /2 E) w(u, v) = 0

Matrix Formulation
9

Connectivity captured via the (weighted) adjacency matrix
W (u, v) = w(u, v)

Let d(u) be the degree of u and D = diag(d) the degree matrix

with obvious restriction for unweighted graphs

L = D�W

Graph signal: f : V ! R

W (u, u) = 0 no loops

L
norm

= D�1/2LD�1/2

Laplacian as an operator on space of graph signals

Graph Laplacians, Signals on Graphs

Lf(u) =
X

v⇠u

w(u, v)
�
f(u)� f(v)

�

Some differential operators
10

L = SS⇤

S=

e=(u,v)

u

v

-1

1()
S⇤f(u, v) = f(v)� f(u)

Sg(u) =
X

(u,v)2E

g(u, v)�
X

(v0,u)2E

g(v0, u)

The Laplacian can be factorized as
Explicit form of the incidence matrix (unweighted in this example):

is a gradient

is a negative divergence

Properties of the Laplacian
11

Laplacian is symmetric and has real eigenvalues

Moreover:

positive semi-definite, non-negative eigenvalues

Spectrum: 0 = �
0

 �
1

 . . .�
max

Dirichlet form

G connected: �1 > 0

�i = 0 and �i+1 > 0 G has i+1 connected components

hf,Lgi = f tLgNotation:

hf,Lfi =
X

u⇠v

w(u, v)
�
f(u)� f(v)

�2 � 0

Measuring Smoothness
12

is a measure of « how smooth » f is on G

Using our definition of gradient:

Local variation

ruf = {S⇤f(u, v), 8v ⇠ u}

krufk2 =

sX

v⇠u

|S⇤f(u, v)|2

Total variation |f |TV =
X

u2V

krufk2 =
X

u2V

sX

v⇠u

|S⇤f(u, v)|2

hf,Lfi =
X

u⇠v

�
f(u)� f(v)

�2 � 0

Notions of Global Regularity for Graph
13

@f

@e

����
m

:=
p

w(m,n) [f(n)� f(m)]Edge
Derivative

Omf :=

"⇢
@f

@e

����
m

�

e2E s.t. e=(m,n)

#
Graph

Gradient

||Omf ||2 =

"
X

n2Nm

w(m,n) [f(n)� f(m)]2
1

2

Local
Variation

1

2

X

m2V

||Omf ||22 =
X

(m,n)2E

w(m,n) [f(n)� f(m)]2 = fTLfQuadratic
Form

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.

T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Discrete Calculus, Grady and Polimeni, 2010

Smoothness of Graph Signals
14

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

S
p

(f) :=
1

p

X

i2V

kO
i

fkp
2

=

1

p

X

i2V

2

4
X

j2Ni

W
i,j

[f(j)� f(i)]2

3

5

p
2

.

(5)

When p = 1, S
1

(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S
2

(f) =
1

2

X

i2V

X

j2Ni

W
i,j

[f(j)� f(i)]2

=

X

(i,j)2E
W

i,j

[f(j)� f(i)]2 = fTLf . (6)

S
2

(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1

2 fk
2

=

p
fTLf =

p
S
2

(f).

Note from (6) that the quadratic form S
2

(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S

2

(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�
0

= min

f2RN

kfk
2

=1

{fTLf} , (7)

and �
`

= min

f2RN

kfk
2

=1

f?span{u
0

,...,u`�1

}

{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u
`

is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u

0

is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices
The basis {u

`

}
`=0,1,...,N�1

of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight W

i,j

by a factor 1p
didj

. Doing so
leads to the normalized graph Laplacian, which is defined as
˜L := D� 1

2LD� 1

2 , or, equivalently,

(

˜Lf)(i) = 1p
d
i

X

j2Ni

W
i,j

"
f(i)p
d
i

� f(j)p
d
j

#
.

G1

λ

f̂ λ()

G2

λ

f̂ λ()

G3

λ

f̂ λ()

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G

1

, and least smooth with
respect to the intrinsic structure of G

3

. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL

1

f = 0.14, fTL
2

f = 1.31, and fTL
3

f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of ˆf on G

1

, and
more energy in the higher frequencies in the graph
spectral plot of ˆf on G

3

.

The eigenvalues {˜�
`

}
`=0,1,...,N�1

of the normalized graph
Laplacian of a connected graph G satisfy

0 =

˜�
0

< ˜�
1

 . . . ˜�
max

 2,

with ˜�
max

= 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V

1

and V
2

such
that every edge e 2 E connects one vertex in V

1

and one vertex
in V

2

. We denote the normalized graph Laplacian eigenvectors
by {˜u

`

}
`=0,1,...,N�1

. As seen in Figure 3(b), the spectrum of
˜L also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u

0

, the normalized graph Laplacian
eigenvector ˜u

0

associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry P

i,j

describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its

underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35

fTL1f = 0.14 fTL2f = 1.31 fTL3f = 1.81

Remark on Discrete Calculus
15

Discrete operators on graphs form the basis of an interesting field
aiming at bringing a PDE-like framework for computational analysis
on graphs:
l Leo Grady: Discrete Calculus
l Olivier Lezoray, Abderrahim Elmoataz and co-workers: PDEs on

graphs:
- many methods from PDEs in image processing can be  

transposed on arbitrary graphs
- applications in vision (point clouds) but also machine learning 

(inference with graph total variation)

Graph Fourier Transform, Coherence

Laplacian eigenvectors
16

L = D�W {(�`,u`)}`=0,1,...,N�1

µ := max

`,i
|hu`, �ii| 2

h
1p
N

, 1
h

Spectral Theorem: Laplacian is PSD with eigen decomposition

That particular basis will play the role of the Fourier basis:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . . �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Graph Coherence

L = U⇤Ut

Important remark on eigenvectors
17

µ := max

`,i
|hu`, �ii| 2

h
1p
N

, 1
h

What does that mean ??

Eigenvectors of modified path graph

Optimal - Fourier case

Examples: Cut and Clustering
18

C(A,B) :=
X

i2A,j2B

W [i, j]

min

A⇢V
RatioCut(A,A)

f tLf = |V | · RatioCut(A,A)

f [i] =

8
<

:

q
|A|/|A| if i 2 A

�
q
|A|/|A| if i 2 A

kfk =
p

|V | and hf, 1i = 0

kfk =
p

|V | and hf, 1i = 0
arg min

f2R|V |
f tLf subject to

Relaxed problem Looking for a smooth partition function

RatioCut(A,A) :=

1

2

C(A,A)

|A| +

1

2

C(A,A)

|A|

19

Spectral Clustering

Examples: Cut and Clustering
20

kfk =
p

|V | and hf, 1i = 0
arg min

f2R|V |
f tLf subject to

By Rayleigh-Ritz, solution is second eigenvector

Remarks: Natural extension to more than 2 sets

Spectral clustering := embedding + k-MEANS

Solution is real-valued and needs to be quantized.
In general, k-MEANS is used.
First k eigenvectors of sparse Laplacians via Lanczos,
complexity driven by eigengap |�k � �k+1|

u1

8i 2 V : i 7!
�
u0(i), . . . , uk�1(i)

�

Graph Embedding/Laplacian Eigenmaps
21

Goal: embed vertices in low dimensional space, discovering geometry
(x1, . . . xN) 7! (y1, . . . yN)

xi 2 Rd yi 2 Rk k < d

Good embedding: nearby points mapped nearby, so smooth map

yi = �(xi)

Graph Embedding/Laplacian Eigenmaps
22

Goal: embed vertices in low dimensional space, discovering geometry
(x1, . . . xN) 7! (y1, . . . yN)

xi 2 Rd yi 2 Rk k < d

X

i,j

W [i, j](yi � yj)
2minimize variations/

maximize smoothness of embedding

Ly = �Dy
fix scale

arg min
y

ytDy = 1

ytD1 = 0

ytLy
Laplacian Eigenmaps

Good embedding: nearby points mapped nearby, so smooth map

Laplacian Eigenmaps
23

[Belkin, Niyogi, 2003]

Remark on Smoothness
24

Linear / Sobolev case

krfk22 M , f tLf M

|f̂(`)|
p
Mp
�`

Smoothness, loosely defined, has been used to motivate various
methods and algorithms. But in the discrete, finite dimensional
case, asymptotic decay does not mean much

,
X

`

�`|f̂(`)|2 M

EK(f) = kf � PK(f)k2 EK(f) krfk2p
�K+1

fTL1f = 0.14 fTL2f = 1.31 fTL3f = 1.81

Smoothness of Graph Signals Revisited
25

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

S
p

(f) :=
1

p

X

i2V

kO
i

fkp
2

=

1

p

X

i2V

2

4
X

j2Ni

W
i,j

[f(j)� f(i)]2

3

5

p
2

.

(5)

When p = 1, S
1

(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S
2

(f) =
1

2

X

i2V

X

j2Ni

W
i,j

[f(j)� f(i)]2

=

X

(i,j)2E
W

i,j

[f(j)� f(i)]2 = fTLf . (6)

S
2

(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1

2 fk
2

=

p
fTLf =

p
S
2

(f).

Note from (6) that the quadratic form S
2

(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S

2

(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�
0

= min

f2RN

kfk
2

=1

{fTLf} , (7)

and �
`

= min

f2RN

kfk
2

=1

f?span{u
0

,...,u`�1

}

{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u
`

is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u

0

is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices
The basis {u

`

}
`=0,1,...,N�1

of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight W

i,j

by a factor 1p
didj

. Doing so
leads to the normalized graph Laplacian, which is defined as
˜L := D� 1

2LD� 1

2 , or, equivalently,

(

˜Lf)(i) = 1p
d
i

X

j2Ni

W
i,j

"
f(i)p
d
i

� f(j)p
d
j

#
.

G1

λ

f̂ λ()

G2

λ

f̂ λ()

G3

λ

f̂ λ()

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G

1

, and least smooth with
respect to the intrinsic structure of G

3

. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL

1

f = 0.14, fTL
2

f = 1.31, and fTL
3

f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of ˆf on G

1

, and
more energy in the higher frequencies in the graph
spectral plot of ˆf on G

3

.

The eigenvalues {˜�
`

}
`=0,1,...,N�1

of the normalized graph
Laplacian of a connected graph G satisfy

0 =

˜�
0

< ˜�
1

 . . . ˜�
max

 2,

with ˜�
max

= 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V

1

and V
2

such
that every edge e 2 E connects one vertex in V

1

and one vertex
in V

2

. We denote the normalized graph Laplacian eigenvectors
by {˜u

`

}
`=0,1,...,N�1

. As seen in Figure 3(b), the spectrum of
˜L also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u

0

, the normalized graph Laplacian
eigenvector ˜u

0

associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry P

i,j

describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its

underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35

Borel functional calculus for symmetric matrices

Functional calculus
26

Symmetric matrices admit a (Borel) functional calculus

f(L) =
X

`2S(L)

f(�`)u`u
t
`

Use spectral theorem on powers, get to polynomials
From polynomial to continuous functions by Stone-Weierstrass
Then Riesz-Markov (non-trivial !)

It will be useful to manipulate functions of the Laplacian

f(L), f : R 7! R

Lku` = �k
`u` polynomials

Example: Diffusion on Graphs
27

Consider the following « heat » diffusion model
@f

@t
= �Lf @

@t
f̂(`, t) = ��`f̂(`, t) f̂(`, 0) := f̂0(`)

f̂(`, t) = e�t�` f̂0(`) f = e�tLf0 by functional calculus

Explicitly:

e�tL[i, j] =
X

`

e�t�`u`(i)u`(j)

e�tL =
X

`

e�t�`u`u
t
`

f(i) =
X

j2V

X

`

e�t�`u`(i)u`(j)f0(j)

=
X

`

e�t�`u`(i)
X

j2V

u`(j)f0(j)

=
X

`

e�t�` f̂0(`)u`(i)

Example: Diffusion on Graphs
28

examples of heat kernel on graph

f0(j) = �k(j)

f(i) =
X

`

e�t�` f̂0(`)u`(i)

=
X

`

e�t�`u`(k)u`(i)

Simple De-Noising Example
29

Suppose a smooth signal f on a graph

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Original Noisy

But you observe only a noisy version y

krfk22 M , f tLf M

|f̂(`)|
p
Mp
�`

y(i) = f(i) + n(i)

Simple De-Noising Example
30

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

Graph Fourier

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

“Low pass” filtering !

argmin
f

kf � yk22 s.t. f tLf M
De-Noising by Regularization

Convolution with a kernel: f̂(`)ĝ(�`; ⌧, r)) g(L; ⌧, r)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Original Noisy Denoised

Simple De-Noising Example
31

argminf
�
||f � y||22 + �fTLf

Filtering:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . . �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

W
ij

=

(

w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W
are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an ith diagonal
element D

ii

= d
i

=

P

j2Ni
W

ij

, where N
i

is the set of
vertex i’s neighbors in G. Its maximum element is d

max

:=

max

i2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by ˜L :=

D� 1

2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�

`

,u
`

)}
`=0,1,...,N�1

and {(˜�
`

, ˜u
`

)}
`=0,1,...,N�1

.
Then U and ˜U are the matrices whose columns are equal to the
eigenvectors of L and ˜L, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �

0

< �
1

 �
2

 . . . �
N�1

, and we
denote the maximum eigenvalues and associated eigenvectors
by �

max

= �
N�1

and u
max

= u
N�1

. �
max

is simple if
�
N�1

> �
N�2

.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

ˆf(�
`

) := hf ,u
`

i =
N

X

i=1

f(i)u⇤
`

(i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ˆh(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

ˆf
out

(�
`

) =

ˆf
in

(�
`

)

ˆh(�
`

), (2)

or, equivalently, taking an inverse graph Fourier transform,

f
out

(i) =
N�1

X

`=0

ˆf
in

(�
`

)

ˆh(�
`

)u
`

(i). (3)

We can also write the filter in matrix form as f
out

= Hf
in

,
where H is a matrix function [14]

H =

ˆh(L) = U[

ˆh(⇤)]U⇤, (4)

where ˆh(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ˆh(�

`

)}
`=0,1,...,N�1

. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �

`

, and u
`

by ˜L, ˜�
`

, and ˜u
`

in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2

V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V

1

to keep. The complement Vc

1

:= V\V
1

=

{v 2 V : v /2 V
1

} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V

1

| ⇡ |V|
2

(D2) It removes vertices that are not connected with edges of
high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

“Low pass” filtering !

32

Convolution with a kernel and localization

“Convolutions” and “Translations”
33

Inherits a lot of properties of the usual convolution

associativity, distributivity, diagonalized by GFT

4. Distributivity:

f ⇤ (g + h) = f ⇤ g + f ⇤ h. (19)

5. Associativity:

(f ⇤ g) ⇤ h = f ⇤ (g ⇤ h). (20)

6. Define a function g
0

2 RN by g
0

(n) :=
PN�1

`=0

�`(n). Then g
0

is an identity for the generalized
convolution product:

f ⇤ g
0

= f. (21)

7. An invariance property with respect to the graph Laplacian (a di↵erence operator):

L(f ⇤ g) = (Lf) ⇤ g = f ⇤ (Lg). (22)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

NX

n=1

(f ⇤ g)(n) = 1p
N

"
NX

n=1

f(n)

#"
NX

n=1

g(n)

#
=

p
Nf̂(0)ĝ(0). (23)

4.2. Generalized Translation of Signals on Graphs

Now the application of the classical translation operator Tu defined in (1) to a function f 2 L2(R) can
be seen as a convolution with �u:

(Tuf)(t) := f(t� u) = (f ⇤ �u)(t)
(14)

=

Z

R
f̂(k) b�u(k) k(t)dk =

Z

R
f̂(k) ⇤

k(u) k(t)dk,

where the equalities are in the weak sense. Thus, for any signal f 2 RN defined on the the graph G and any
i 2 {1, 2, . . . , N}, we also define a generalized translation operator Ti : RN ! RN via generalized convolution
with a delta centered at vertex i:

(Tif) (n) :=
p
N(f ⇤ �i)(n)

(15)

=
p
N

N�1X

`=0

f̂(`)�⇤
` (i)�`(n). (24)

The translation (24) is a kernelized operator. The window to be shifted around the graph is defined in the
graph spectral domain via the kernel f̂(·). To translate this window to vertex i, the `th component of the
kernel is multiplied by �⇤

` (i), and then an inverse graph Fourier transform is applied. As an example, in
Figure 4, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
can see that doing so has the desired e↵ect of shifting a window around the graph, centering it at any given
vertex i.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},

1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .

7

4. Distributivity:

f ⇤ (g + h) = f ⇤ g + f ⇤ h. (19)

5. Associativity:

(f ⇤ g) ⇤ h = f ⇤ (g ⇤ h). (20)

6. Define a function g
0

2 RN by g
0

(n) :=
PN�1

`=0

�`(n). Then g
0

is an identity for the generalized
convolution product:

f ⇤ g
0

= f. (21)

7. An invariance property with respect to the graph Laplacian (a di↵erence operator):

L(f ⇤ g) = (Lf) ⇤ g = f ⇤ (Lg). (22)

8. The sum of the generalized convolution product of two signals is a constant times the product of the
sums of the two signals:

NX

n=1

(f ⇤ g)(n) = 1p
N

"
NX

n=1

f(n)

#"
NX

n=1

g(n)

#
=

p
Nf̂(0)ĝ(0). (23)

4.2. Generalized Translation of Signals on Graphs

Now the application of the classical translation operator Tu defined in (1) to a function f 2 L2(R) can
be seen as a convolution with �u:

(Tuf)(t) := f(t� u) = (f ⇤ �u)(t)
(14)

=

Z

R
f̂(k) b�u(k) k(t)dk =

Z

R
f̂(k) ⇤

k(u) k(t)dk,

where the equalities are in the weak sense. Thus, for any signal f 2 RN defined on the the graph G and any
i 2 {1, 2, . . . , N}, we also define a generalized translation operator Ti : RN ! RN via generalized convolution
with a delta centered at vertex i:

(Tif) (n) :=
p
N(f ⇤ �i)(n)

(15)

=
p
N

N�1X

`=0

f̂(`)�⇤
` (i)�`(n). (24)

The translation (24) is a kernelized operator. The window to be shifted around the graph is defined in the
graph spectral domain via the kernel f̂(·). To translate this window to vertex i, the `th component of the
kernel is multiplied by �⇤

` (i), and then an inverse graph Fourier transform is applied. As an example, in
Figure 4, we apply generalized translation operators to the normalized heat kernel from Figure 1(c). We
can see that doing so has the desired e↵ect of shifting a window around the graph, centering it at any given
vertex i.

4.3. Properties of the Generalized Translation Operator

Some expected properties of the generalized translation operator follow immediately from the generalized
convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},

1. Ti(f ⇤ g) = (Tif) ⇤ g = f ⇤ (Tig).

2. TiTjf = TjTif .

7

Use convolution to induce translations

(f ⇤ g)(n) =
X

`

f̂(`)ĝ(`)u`(n)

g0(n) :=
X

`

u`(n)

�
Tif

�
(n) :=

p
N(f ⇤ �i)(n) =

p
N

X

`

f̂(`)u⇤
` (i)u`(n)

Localising a Kernel

l Action of the localisation operator on a spectral kernel

34

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Further Reading
Tutorial Overviews

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, “Signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains,” Signal Process. Mag.,
to appear May 2013.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc.

IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

Spectral Graph Theory and Graph Laplacian Eigenvectors

F. K. Chung, Spectral Graph Theory, vol. 92 of the CBMS Reg. Conf. Ser. Math., AMS Bokstore, 1997.

T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of Graphs, Springer, 2007.

D. Spielman, “Spectral graph theory” in Combinatorial Scientific Computing, Chapman and Hall, 2012.

Dictionaries for Signals on Graphs

R. R. Coifman and M. Maggioni, “Di↵usion wavelets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp.

53–94, Jul. 2006.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–150, Mar. 2011.

S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph structured

data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, Jun. 2012.

D. I Shuman, B. Ricaud, and P. Vandergheynst, “A windowed graph Fourier transform,”in Proc. IEEE Stat.

Signal Process. Wrkshp., Ann Arbor, MI, Aug. 2012.

David Shuman Signal Processing on Graphs February 11, 2013 34 / 35

Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

�
Tif

�
(n) :=

p
N(f ⇤ �i)(n) =

p
N

X

`

f̂(`)u⇤
` (i)u`(n)

The Agonizing Limits of Intuition
35

The Graph Fourier and Kronecker bases are not necessarily mutually
unbiased

Laplacian eigenvectors (Fourier modes!) can be well localized
- phenomenon not yet fully understood, under intense study
- can be observed in lots of experimental data graphs
- not universal: known classes of random and regular graphs have  
 delocalized eigenvectors

- the limit towards low coherence seems well-behaved
 (all regular properties emerge)
- HOWEVER in average:  

LTS2 - EPFL 6 GRAPH INEQUALITIES

Theorem 18. For f, g 2 RN two graph signals and r 2 R, we have

kf ⇤ gk
r

6 N
1
r�

1
2 kfk2kgk2 (48)

for r 2 [1, 2], and

kf ⇤ gk
r

6 µ1� 2
r kfk2kgk2 (49)

for r 2 [2,1].

Proof. For a graph signal f 2 RN , we define an operator T
g

: RN ! RN by (T
g

f)(n) = (f ⇤ g)(n).
Using (44) and Lemma 6, we observe that this operator is bounded from L2 to L1 by kgk2

p
N and

from L2 to L2 by kgk2. Thus, we can apply the Riez-Thorin theorem to this operator and we get
(48).

Then, for a graph signal g 2 RN , we define another operator T
f

: RN ! RN by (T
f

g)(n) =

(f ⇤ g)(n). With Lemma 6 and (45), we observe that this new operator is bounded from L2 to L2

by kgk2 and from L2 to L1 by µkfk2. Again the Riez-Thorin theorem leads to the desired result
(49).

Remark: If µ < N� 1
4 (ring graph for instance), the following inequality is sharper than Theorem

18.
kf ⇤ gk

r

6 N
1
2r µ

1
r0 kfk2kgk2.

It is the result of the application of the Parseval equality to Theorem 17. In order to get a bound
on the p-norm, we can apply the following Lemma. Using Lemma 2 and Theorem 18, we have the
following results:

1 6 p 6 2 p > 2

1 6 r 6 2 kf ⇤ gk
r

6 N
1
r�

1
2 kfk

p

kgk2 kf ⇤ gk
r

6 N
1
r�

1
p kfk

p

kgk2
r > 2 kf ⇤ gk

r

6 µ1� 2
r kfk

p

kgk2 kf ⇤ gk
r

6 N
1
2�

1
pµ1� 2

r kfk
p

kgk2

6.5 Consequences of the inequalities
Those inequalities can be used to bound the translation operator for instance. Applying Lemma

7 leads to:

kT
i

k2 = sup

g2RN

kT
i

gk2
kgk2

= sup

g2RN

p
Nkg ⇤ �

i

k2
kgk2

6
p
Nµ

Furthermore translating the neutral element g0(n) =
P

N�1
`=0 �

`

(n) gives a lower bound:

kT
i

k2 = sup

g2RN

kT
i

gk2
kgk2

= sup

g2RN

p
Nkg ⇤ �

i

k2
kgk2

>
p
Nkg0 ⇤ �ik2
kg0k2

=

p
Nk�

i

k2p
N

= 1.

Thus we have:
1 6 kT

i

k2 6
p
Nµ (50)

Similarly, for the modulation, we have:

kM
k

k2 = sup

g2RN

kM
k

gk2
kgk2

= sup

g2RN

p
Nkg · �

k

k2
kgk2

6
p
Nµ.

For a special g
s

(n) = 1, the bound becomes

kM
k

k2 = sup

g2RN

kM
k

gk2
kgk2

= sup

g2RN

p
Nkg · �

k

k2
kgk2

>
p
Nkg

s

· �
k

k2
kg

s

k2
=

p
Nk�

k

k2p
N

= 1

and
1 6 kM

k

k2 6
p
Nµ. (51)

We observe that (50) and (51) become tight, when µ =

1p
N

which is the case of the DFT.

Spring 2011 31/40

1

N

NX

i=1

kTik22 = 1

µ := max

`,i
|hu`, �ii| 2

h
1p
N

, 1
h

36

f̂ ()

λ

(a)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

(b)

1

1.5

2

2.5

3

3.5

4

(c)

0.6

0.8

1

1.2

1.4

1.6

1.8

(d)

0.8

0.9

1

1.1

1.2

1.3

1.4

(e)

0.9

1

1.1

1.2

1.3

1.4

1.5

(f)

Figure 6: Norms of translated normalized heat kernels with ⌧ = 2. (a) A normalized heat kernel f̂(`) = Ce�2�` on the sensor
network graph shown in (b). (b)-(f) The value at each vertex i represents kTifk2. The edges of the graphs in (b) and (c) are
weighted by a thresholded Gaussian kernel weighting function based on the physical distance between nodes (10), whereas the
edges of the graphs in (e)-(f) all have weights equal to one. In all cases, the norms of the translated windows are not too close

to zero, and the larger norms tend to be located at the “boundary” vertices in the graph. The lower bound |f̂(0)| and upper
bound

p
Nµkfk

2

of Lemma 1 are (b) [0.27,21.38]; (c) [0.20,29.22]; (d) [0.07,42.88]; (e) [0.62,4.26]; (f) [0.36,3.25].

and with the definitions (25) and (30) of the generalized translation and the polynomial kernel, we have

(TipK) (n) =
p
N

N�1X

`=0

cpK(`)�⇤
` (i)�`(n)

=
p
N

N�1X

`=0

KX

k=0

ak�
k
`�

⇤
` (i)�`(n)

=
p
N

KX

k=0

ak(Lk)i,n = 0.

More generally, as seen in Figure 5, if we translate a smooth kernel to a given center vertex i, the
magnitude of the translated kernel at another vertex n decays as the distance between i and n increases. In
the following theorem, we provide one estimate of this localization by combining the strict localization of
polynomial kernels with a classical result on the minimax polynomial approximation error.

Theorem 1: Let ĝ : [0,�
max

] ! R be a kernel, define din := dG(i, n), and define the minimax polynomial
approximation error

Bĝ(K) := inf
cpK

(
sup

�2[0,�
max

]

|ĝ(�)� cpK(�)|
)
,

10

Kernel Localization
37

The operator T should be understood as kernel localization:

From a kernel ĝ(s)

Tjg(i) =
X

`

ĝ(�`)u`(i)u`(j)

generate localized instances:

By functional calculus, the linear operator
f 7! g(L)f

is the kernelized convolution.

Kernel Localization

ĝ : R+ 7! R

�n(m) =
�
Tng

�
(m)

Polynomial Localization
38

Given a spectral kernel g, construct the family of features:

Are these features localized ?

Polynomial Kernels are K-Localized

cpK(�`) =
KX

k=0

ak�
k
` if d(i, n) > K, then (TipK)(n) = 0

�n(m) =
p
N

N�1X

`=0

ĝ(�`)u`(m)u⇤
` (n)

�n(m) =
�
Tng

�
(m)

Polynomial Localization
39

Suppose the GFT of the kernel is smooth enough (K+1 different.)

Construct an order K polynomial approximation:

�0
n(m) = h�m, PK(L)�ni Exactly localized in a K-ball around n

�n(m) = h�m, g(L)�ni Should be well localized within
K-ball around n !

Given a spectral kernel g, construct the family of features:

Are these features localized ?

�n(m) =
p
N

N�1X

`=0

ĝ(�`)u`(m)u⇤
` (n)

Polynomial Localization - Extended
40

inf
qK

�
kf � qKk1

⇥
b�a
2

⇤K+1

(K + 1)! 2K
kf (K+1)k1

f is (K+1)-times differentiable:

|(Tig)(n)|
p
N inf

dpKin

(
sup

�2[0,�
max

]
|ĝ(�)� dpKin(�)|

)
=

p
N inf

dpKin

{kĝ � dpKink1}

Kin := d(i, n)� 1

|(Tig)(n)|
"
2
p
N

din!

✓
�
max

4

◆din

sup
�2[0,�

max

]

|ĝ(din)(�)|
#

Let

Regular Kernels are Localized
If the kernel is d(i, n)-times di↵erentiable:

Example: for the heat kernel ĝ(�) = e�⌧�

|(Tig)(n)|
kTigk2

 2
p
N

din!

✓
⌧�

max

4

◆din

r

2N

din⇡
e�

1
12din+1

✓
⌧�

max

e

4din

◆din

Polynomial Localization - Extended
41

�2
i (f) =

1

kfk22

NX

n=1

d2in[f(n)]
2

We can estimate an explicit measure of spread in terms of the degrees:

�2

i (Tig)
⌧N�

max

eDi

(2⇡)
3

2

e
⌧�

max

e2(D
max

�1)

4

⌧ = 5
⌧ = 25

⌧ = 50

⌧ ! 0) Tig ! �i, �
2
i (Tig) ! 0

⌧ ! +1) Tig ! 1p
N

, �2
i (Tig) !

1

N

NX

n=1

d(i, n)2

0 40

0

1

λ

Remark on Implementation
42

Not necessary to compute spectral decomposition

Polynomial approximation :

ex: Chebyshev, minimax

Then wavelet operator expressed with powers of Laplacian:

And use sparsity of Laplacian in an iterative way

ĝ(tx) '
K�1X

k=0

ak(t)pk(x)

g(tL) '
K�1X

k=0

ak(t)Lk

W̃f (t, j) =
�
p(L)f#

⇥
j

|Wf (t, j)� W̃f (t, j)| ⇥ B⌅f⌅

W̃f (tn, j) =

�
1
2
cn,0f

+
Mn⇤

k=1

cn,kT k(L)f#

⇥

j

T k(L)f =
2
a1

(L� a2I)
�
T k�1(L)f

⇥
� T k�2(L)f

Remark on Implementation
43

sup norm control (minimax or Chebyshev)

O(
J�

n=1

Mn|E|)

Computational cost dominated by matrix-vector multiply with
(sparse) Laplacian matrix

Note: “same” algorithm for adjoint !Complexity:

Shifted Chebyshev polynomial

44

 IEEE SIGNAL PROCESSING MAGAZINE [90] MAY 2013

as solutions, relations between these discrete graph spectral
filters and filters arising out of continuous partial differential
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the
output ()f iout at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local
neighborhood of vertex i

 () () (),f i b f i b f j,
(,)

,
N

i i
j i K

i jout in in= +
!

/ (16)

for some constants { } .b , , Vi j i j! Equation (16) just says that
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ()h ak

K
k

k
0m m=, ,=/t

for some constants { } ,a , ,k k K0 1f= we can also interpret the filtering
equation (12) in the vertex domain. From (13), we have

() () () ()

() () ()

() .L

f i f h u i

f j a u j u i

f j a

*

,

N

j

N

k

K

k

N
k

j

N

k

K

k
k

i j

0

1

1 0 0

1

1 0

out in

in

in

m m

m

=

=

=

,

, , ,

,

, , ,

=

-

= = =

-

= =

/

/ / /

/ /

t t

^ h

(17)

EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= + where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0 To
enforce a priori information that the clean signal f0 is smooth
with respect to the underlying graph, we include a regularization
term of the form ,f fLT and, for a fixed ,02c solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" , (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1])
the optimal reconstruction is given by

 () () (),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E (S2)

or, equivalently, () ,f Lh y= t where () : /h 1 1m cm= +t ^ h can be
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512# cameraman
image as f0 and corrupt it with additive Gaussian noise with mean
zero and standard deviation 0.1 to get a noisy signal y. We then
apply two different filtering methods to denoise the signal. In the
first method, we apply a symmetric two-dimensional Gaussian

low-pass filter of size 2 27 7# with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1)
between two neighboring pixels according to the similarity of the
noisy image values at those two pixels; i.e., the edges of the
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel
values in the noisy image. For the Gaussian weights in (1), we take

.0 1i = and .0l = We then perform the low-pass graph filtering
(S2) with 10c = to reconstruct the image. This method is a variant
of the graph-based anisotropic diffusion image smoothing
method of [11].

In all image displays in Figure S2, we threshold the values to
the [0,1] interval. The images in (b) comprise zoomed-in versions
of the images in (a). Comparing the results of the two filtering
methods, we see that to smooth sufficiently in smoother areas
of the image, the classical Gaussian filter also smooths across the
image edges. The graph spectral filtering method does not
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

 IEEE SIGNAL PROCESSING MAGAZINE [90] MAY 2013

as solutions, relations between these discrete graph spectral
filters and filters arising out of continuous partial differential
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the
output ()f iout at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local
neighborhood of vertex i

 () () (),f i b f i b f j,
(,)

,
N

i i
j i K

i jout in in= +
!

/ (16)

for some constants { } .b , , Vi j i j! Equation (16) just says that
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ()h ak

K
k

k
0m m=, ,=/t

for some constants { } ,a , ,k k K0 1f= we can also interpret the filtering
equation (12) in the vertex domain. From (13), we have

() () () ()

() () ()

() .L

f i f h u i

f j a u j u i

f j a

*

,

N

j

N

k

K

k

N
k

j

N

k

K

k
k

i j

0

1

1 0 0

1

1 0

out in

in

in

m m

m

=

=

=

,

, , ,

,

, , ,

=

-

= = =

-

= =

/

/ / /

/ /

t t

^ h

(17)

EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= + where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0 To
enforce a priori information that the clean signal f0 is smooth
with respect to the underlying graph, we include a regularization
term of the form ,f fLT and, for a fixed ,02c solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" , (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1])
the optimal reconstruction is given by

 () () (),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E (S2)

or, equivalently, () ,f Lh y= t where () : /h 1 1m cm= +t ^ h can be
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512# cameraman
image as f0 and corrupt it with additive Gaussian noise with mean
zero and standard deviation 0.1 to get a noisy signal y. We then
apply two different filtering methods to denoise the signal. In the
first method, we apply a symmetric two-dimensional Gaussian

low-pass filter of size 2 27 7# with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1)
between two neighboring pixels according to the similarity of the
noisy image values at those two pixels; i.e., the edges of the
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel
values in the noisy image. For the Gaussian weights in (1), we take

.0 1i = and .0l = We then perform the low-pass graph filtering
(S2) with 10c = to reconstruct the image. This method is a variant
of the graph-based anisotropic diffusion image smoothing
method of [11].

In all image displays in Figure S2, we threshold the values to
the [0,1] interval. The images in (b) comprise zoomed-in versions
of the images in (a). Comparing the results of the two filtering
methods, we see that to smooth sufficiently in smoother areas
of the image, the classical Gaussian filter also smooths across the
image edges. The graph spectral filtering method does not
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

 IEEE SIGNAL PROCESSING MAGAZINE [90] MAY 2013

as solutions, relations between these discrete graph spectral
filters and filters arising out of continuous partial differential
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the
output ()f iout at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local
neighborhood of vertex i

 () () (),f i b f i b f j,
(,)

,
N

i i
j i K

i jout in in= +
!

/ (16)

for some constants { } .b , , Vi j i j! Equation (16) just says that
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ()h ak

K
k

k
0m m=, ,=/t

for some constants { } ,a , ,k k K0 1f= we can also interpret the filtering
equation (12) in the vertex domain. From (13), we have

() () () ()

() () ()

() .L

f i f h u i

f j a u j u i

f j a

*

,

N

j

N

k

K

k

N
k

j

N

k

K

k
k

i j

0

1

1 0 0

1

1 0

out in

in

in

m m

m

=

=

=

,

, , ,

,

, , ,

=

-

= = =

-

= =

/

/ / /

/ /

t t

^ h

(17)

EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= + where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0 To
enforce a priori information that the clean signal f0 is smooth
with respect to the underlying graph, we include a regularization
term of the form ,f fLT and, for a fixed ,02c solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" , (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1])
the optimal reconstruction is given by

 () () (),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E (S2)

or, equivalently, () ,f Lh y= t where () : /h 1 1m cm= +t ^ h can be
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512# cameraman
image as f0 and corrupt it with additive Gaussian noise with mean
zero and standard deviation 0.1 to get a noisy signal y. We then
apply two different filtering methods to denoise the signal. In the
first method, we apply a symmetric two-dimensional Gaussian

low-pass filter of size 2 27 7# with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1)
between two neighboring pixels according to the similarity of the
noisy image values at those two pixels; i.e., the edges of the
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel
values in the noisy image. For the Gaussian weights in (1), we take

.0 1i = and .0l = We then perform the low-pass graph filtering
(S2) with 10c = to reconstruct the image. This method is a variant
of the graph-based anisotropic diffusion image smoothing
method of [11].

In all image displays in Figure S2, we threshold the values to
the [0,1] interval. The images in (b) comprise zoomed-in versions
of the images in (a). Comparing the results of the two filtering
methods, we see that to smooth sufficiently in smoother areas
of the image, the classical Gaussian filter also smooths across the
image edges. The graph spectral filtering method does not
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

 IEEE SIGNAL PROCESSING MAGAZINE [90] MAY 2013

as solutions, relations between these discrete graph spectral
filters and filters arising out of continuous partial differential
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the
output ()f iout at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local
neighborhood of vertex i

 () () (),f i b f i b f j,
(,)

,
N

i i
j i K

i jout in in= +
!

/ (16)

for some constants { } .b , , Vi j i j! Equation (16) just says that
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ()h ak

K
k

k
0m m=, ,=/t

for some constants { } ,a , ,k k K0 1f= we can also interpret the filtering
equation (12) in the vertex domain. From (13), we have

() () () ()

() () ()

() .L

f i f h u i

f j a u j u i

f j a

*

,

N

j

N

k

K

k

N
k

j

N

k

K

k
k

i j

0

1

1 0 0

1

1 0

out in

in

in

m m

m

=

=

=

,

, , ,

,

, , ,

=

-

= = =

-

= =

/

/ / /

/ /

t t

^ h

(17)

EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= + where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0 To
enforce a priori information that the clean signal f0 is smooth
with respect to the underlying graph, we include a regularization
term of the form ,f fLT and, for a fixed ,02c solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" , (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1])
the optimal reconstruction is given by

 () () (),f i y u i1
1

*

N

0

1

cm
m=

+
,

,
, ,

=

-

/ t; E (S2)

or, equivalently, () ,f Lh y= t where () : /h 1 1m cm= +t ^ h can be
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512# cameraman
image as f0 and corrupt it with additive Gaussian noise with mean
zero and standard deviation 0.1 to get a noisy signal y. We then
apply two different filtering methods to denoise the signal. In the
first method, we apply a symmetric two-dimensional Gaussian

low-pass filter of size 2 27 7# with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1)
between two neighboring pixels according to the similarity of the
noisy image values at those two pixels; i.e., the edges of the
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel
values in the noisy image. For the Gaussian weights in (1), we take

.0 1i = and .0l = We then perform the low-pass graph filtering
(S2) with 10c = to reconstruct the image. This method is a variant
of the graph-based anisotropic diffusion image smoothing
method of [11].

In all image displays in Figure S2, we threshold the values to
the [0,1] interval. The images in (b) comprise zoomed-in versions
of the images in (a). Comparing the results of the two filtering
methods, we see that to smooth sufficiently in smoother areas
of the image, the classical Gaussian filter also smooths across the
image edges. The graph spectral filtering method does not
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

Spectral Graph Theory Generalized Operators Transforms Scalable Algorithms and Distributed Processing

Example: Image Denoising by Low-Pass Graph Filtering

f (n) // GFT // f̂ (�`) // ĝ // ĝ(�`)f̂ (�`) // IGFT // �f (n)

Semi-Local Graph Tikhonov Regularization

argmin
f

�

kf � yk22 + �fTLf

=) ĝ(�`) =
1

1 + ��`
λ

ĝ(λ) = 1
1+10λ

ĝ(λ)

7

Example 2 (Tikhonov regularization): We observe a noisy graph signal y = f
0

+ ⌘, where ⌘ is uncorrelated additive
Gaussian noise, and wish to recover f

0

. To enforce a priori information that the clean signal f
0

is smooth with respect to
the underlying graph, we include a regularization term of the form fTLf , and, for a fixed � > 0, solve the optimization
problem

argmin

f

�
kf � yk2

2

+ �fTLf

. (16)

The first-order optimality conditions of the convex objective function in (??) show that (see, e.g., [?], [?, Section III-A],
[?, Proposition 1]) the optimal reconstruction is given by

f⇤(i) =
N�1X

`=0

1

1 + ��
`

�
ŷ(�

`

)u
`

(i), (17)

or, equivalently, f = ˆh(L)y, where ˆh(�) := 1

1+��

can be viewed as a low-pass filter.
As an example, in the figure below, we take the 512 x 512 cameraman image as f

0

and corrupt it with additive
Gaussian noise with mean zero and standard deviation 0.1 to get a noisy signal y. We then apply two different filtering
methods to denoise the signal. In the first method, we apply a symmetric two-dimensional Gaussian low-pass filter of
size 72 x 72 with two different standard deviations: 1.5 and 3.5. In the second method, we form a semi-local graph on
the pixels by connecting each pixel to its horizontal, vertical, and diagonal neighbors, and setting the Gaussian weights
(??) between two neighboring pixels according to the similarity of the noisy image values at those two pixels; i.e., the
edges of the semi-local graph are independent of the noisy image, but the distances in (??) are simply the differences
between the neighboring pixel values in the noisy image. For the Gaussian weights in (??), we take ✓ = 0.1 and = 0.
We then perform the low-pass graph filtering (??) to reconstruct the image. This method is a variant of the graph-based
anisotropic diffusion image smoothing method of [?].

In all image displays, we threshold the values to the [0,1] interval. The bottom row of images is comprised of
zoomed-in versions of the top row of images. Comparing the results of the two filtering methods, we see that in order to
smooth sufficiently in smoother areas of the image, the classical Gaussian filter also smooths across the image edges.
The graph spectral filtering method does not smooth as much across the image edges, as the geometric structure of the
image is encoded in the graph Laplacian via the noisy image.

Gaussian-Filtered Gaussian-Filtered
Original Image Noisy Image (Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph-Filtered

comprising any path connecting i and j) is greater than k [?,
Lemma 5.2]. Therefore, we can write (??) exactly as in (??),
with the constants defined as

b
i,j

:=

KX

k=dG(i,j)

a
k

�
Lk

�
i,j

.

So when the frequency filter is an order K polynomial,
the frequency filtered signal at vertex i, f

out

(i), is a linear
combination of the components of the input signal at vertices
within a K-hop local neighborhood of vertex i. This property
can be quite useful when relating the smoothness of a filtering

kernel to the localization of filtered signals in the vertex
domain.

B. Convolution

We cannot directly generalize the definition (??) of a
convolution product to the graph setting, because of the term
h(t�⌧). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex
exponentials in (??) with the graph Laplacian eigenvectors

David Shuman Signal Processing on Graphs February 11, 2013 49 / 35

Semi-Local Graph

Non-local Wavelet Frame
l Non-local Wavelets are ...

 ... Graph Wavelets on Non-Local Graph

45

increasing scale

 t, (i)

Interest: good adaptive sparsity basis

Localization / Uncertainty
46

Competition between smoothness and localization in the spectral
representation of kernels

�2
t �2

! = C

Z

R
dt|tf(t)|2

Z

R
dt|f 0(t)|2Remark:

Smooth kernels can be used to construct controlled localized features

Example: Spectral Graph Wavelets

Localization/Smoothness generate sparsity (but more on that later)

Summary so far
l We now have a simple black box theory to design

and apply linear filters on graph data
- results on localisation, uncertainty
- fast, scalable algorithm
- all sorts of filter banks studied and used in litterature

l We can use filter banks to construct graph
equivalent of linear transforms (wavelets, Gabor,..)

l We can extend stationary signal models
l (sub)-sampling theory

47

Goal

48

Given partially observed information at the nodes of a graph

?

Can we robustly and efficiently infer missing information ?

What signal model ?

Influence of the structure of the graph ?

How many observations ?

Notations

49

L is real, symmetric PSD

orthonormal eigenvectors U 2 Rn⇥n

non-negative eigenvalues �1 6 �2 6 . . . ,�n

L = U⇤U|

Graph Fourier Matrix

k-bandlimited signals
x 2 Rn

x̂ = U|
x

Fourier coefficients

x = Ukx̂
k

x̂

k 2 Rk

Uk := (u1, . . . ,uk) 2 Rn⇥k
first k eigenvectors only

Sampling	Model

50

p 2 Rn pi > 0 kpk1 =
nX

i=1

pi = 1

P := diag(p) 2 Rn⇥n

P(!j = i) = pi, 8j 2 {1, . . . ,m} and 8i 2 {1, . . . , n}

Draw independently m samples (random sampling)

yj := x!j , 8j 2 {1, . . . ,m}

y = Mx

Sampling	Model

51

kU|
k�ik2

kU|�ik2
=

kU|
k�ik2

k�ik2
= kU|

k�ik2

How much a perfect impulse can be concentrated on first k eigenvectors

Carries interesting information about the graph

Ideally: pi large wherever kU|
k�ik2 is large

Graph Coherence

⌫kp := max

16i6n

n

p�1/2
i kU|

k�ik2
o

⌫kp >
p
kRem:

Stable	Embedding	

52

Theorem 1 (Restricted isometry property). Let M be a random subsampling

matrix with the sampling distribution p. For any �, ✏ 2 (0, 1), with probability

at least 1� ✏,

(1� �) kxk22 6 1

m

���MP�1/2
x

���
2

2
6 (1 + �) kxk22 (1)

for all x 2 span(Uk) provided that

m > 3

�2
(⌫kp)

2
log

✓
2k

✏

◆
. (2)

MP�1/2
x = P�1/2

⌦ Mx

Only need M, re-weighting offline

(⌫kp)
2 > k Need to sample at least k nodes

Proof similar to CS in bounded ONB but simpler since model is a subspace (not a union)

Stable	Embedding	

53

(⌫kp)
2 > k Need to sample at least k nodes

Can we reduce to optimal amount ?

Corollary 1. Let M be a random subsampling matrix constructed with the sam-

pling distribution p

⇤
. For any �, ✏ 2 (0, 1), with probability at least 1� ✏,

(1� �) kxk22 6 1

m

���MP�1/2
x

���
2

2
6 (1 + �) kxk22

for all x 2 span(Uk) provided that

m > 3

�2
k log

✓
2k

✏

◆
.

Variable Density Sampling p⇤
i :=

kU|
k�ik

2
2

k
, i = 1, . . . , n

is such that: (⌫kp)
2 = k and depends on structure of graph

Recovery	Procedures

54

y = Mx+ n

x 2 span(Uk)

y 2 Rm

stable embedding

min
z2span(Uk)

���P�1/2
⌦ (Mz � y)

���
2

Standard Decoder

need projector
re-weighting for RIP

Recovery	Procedures

55

y = Mx+ n

x 2 span(Uk)

y 2 Rm

stable embedding

Efficient Decoder:

min
z2Rn

���P�1/2
⌦ (Mz � y)

���
2

2
+ � z|g(L)z

soft constrain on frequencies

efficient implementation

Analysis	of	Standard	Decoder

56

min
z2span(Uk)

���P�1/2
⌦ (Mz � y)

���
2

Standard Decoder:

Theorem 1. Let ⌦ be a set of m indices selected independently from {1, . . . , n}
with sampling distribution p 2 Rn

, and M the associated sampling matrix. Let

✏, � 2 (0, 1) and m > 3
�2 (⌫kp)

2
log

�
2k
✏

�
. With probability at least 1 � ✏, the

following holds for all x 2 span(Uk) and all n 2 Rm
.

i) Let x

⇤
be the solution of Standard Decoder with y = Mx+ n. Then,

kx⇤ � xk2 6 2p
m (1� �)

���P�1/2
⌦ n

���
2
. (1)

ii) There exist particular vectors n0 2 Rm
such that the solution x

⇤
of Stan-

dard Decoder with y = Mx+ n0 satisfies

kx⇤ � xk2 > 1p
m (1 + �)

���P�1/2
⌦ n0

���
2
. (2)

Exact recovery when noiseless

Analysis	of	Efficient	Decoder

57

Efficient Decoder:

min
z2Rn

���P�1/2
⌦ (Mz � y)

���
2

2
+ � z|g(L)z

p(t) =
dX

i=0

↵i t
i

xp = U diag(p̂)U|
x =

dX

i=0

↵i L
i
x

Pick special polynomials and use e.g. recurrence relations for fast filtering
(with sparse matrix-vector multiply only)

non-negative

h : R ! R
xh := U diag(ĥ)U|

x 2 Rn

ĥ = (h(�1), . . . , h(�n))
| 2 Rn

Filter reshapes Fourier coefficients

Analysis	of	Efficient	Decoder

58

Efficient Decoder:

min
z2Rn

���P�1/2
⌦ (Mz � y)

���
2

2
+ � z|g(L)z

non-negative

non-decreasing =
penalizes high-frequencies

Favours reconstruction of approximately band-limited signals

i�k(t) :=

⇢
0 if t 2 [0,�k],
+1 otherwise,

Ideal filter yields Standard Decoder

Analysis	of	Efficient	Decoder

59

Theorem 1. Let ⌦, M, P, m as before and M
max

> 0 be a constant such

that

��MP�1/2
��
2

6 M
max

. Let ✏, � 2 (0, 1). With probability at least 1 � ✏, the
following holds for all x 2 span(Uk), all n 2 Rn

, all � > 0, and all nonnegative

and nondecreasing polynomial functions g such that g(�k+1

) > 0.
Let x

⇤
be the solution of E�cient Decoder with y = Mx+ n. Then,

k↵⇤ � xk
2

6 1p
m(1� �)

"
2 +

M
maxp

�g(�k+1

)

!���P�1/2
⌦

n

���
2

+

M

max

s
g(�k)

g(�k+1

)
+
p

�g(�k)

!
kxk

2

#
,

(1)

and

k�⇤k
2

6 1p
�g(�k+1

)

���P�1/2
⌦

n

���
2

+

s
g(�k)

g(�k+1

)
kxk

2

, (2)

where ↵

⇤ := UkU
|
k x

⇤
and �

⇤ := (I� UkU
|
k)x

⇤
.

Analysis	of	Efficient	Decoder

60

g(�k) = 0

Noiseless case:

kx⇤ � xk
2

6 1p
m(1� �)

M

max

s
g(�k)

g(�k+1

)
+
p

�g(�k)

!
kxk

2

+

s
g(�k)

g(�k+1

)
kxk

2

+ non-decreasing implies perfect reconstruction

choose � as close as possible to 0 and seek to minimise the ratio g(�k)/g(�k+1)

Otherwise:

Choose filter to increase spectral gap ?

Clusters are of course good

Noise: kP�1/2
⌦ nk2/ kxk2

Estimating	the	Optimal	Distribution

61

rb�k
= U diag(�1, . . . ,�k, 0, . . . , 0) U

| r = UkU
|
k r

Filter random signals with ideal low-pass filter:

E (rb�k
)2i = �|i UkU

|
k E(rr|) UkU

|
k�i = kU|

k�ik
2
2

p̃i :=

PL
l=1 (rlc�k

)2i
Pn

i=1

PL
l=1 (rlc�k

)2i

In practice, one may use a polynomial approximation of the ideal filter and:

L > C

�2
log

✓
2n

✏

◆

Need to estimate kU|
k�ik

2
2

Estimating	the	Eigengap

62

(1� �)
nX

i=1

��U|
j⇤�i

��2
2

6
nX

i=1

LX

l=1

(rlb�)
2
i 6 (1 + �)

nX

i=1

��U|
j⇤�i

��2
2

Again, low-pass filtering random signals:

nX

i=1

��U|
j⇤�i

��2
2

= kUj⇤k2
Frob

= j⇤Since:

(1� �) j⇤ 6
nX

i=1

LX

l=1

(rlb�)
2
i 6 (1 + �) j⇤We have:

Dichotomy using the filter bandwidth

Experiments

63

unbalanced	clusters

Experiments

64

Experiments

65

Experiments

66

7%

Compressive	Spectral	Clustering

67

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

by Johnson-Lindenstrauss ⌘ =

4 + 2�

✏2/2� ✏3/3
log n

Compressive	Spectral	Clustering

68

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

by Johnson-Lindenstrauss ⌘ =

4 + 2�

✏2/2� ✏3/3
log n

Use k-means on compressed data and feed into Efficient Decoder

Each feature map is smooth, therefore keep

m > 6

�2
⌫2k log

✓
k

✏0

◆

Compressive	Spectral	Clustering

69
k log k

log k

Outlook
70

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Approach

Computa(onal+
Harmonic+Analysis+

++
Spectral+and+Algebraic+

Graph+Theory+
++

Numerical+Linear+Algebra+

Signal+
Transforms+/+
Dic(onaries+

Generalized+
Operators+

Scalable+
Algorithms+

Theore(cal+
Underpinnings+

Applica(ons+

David Shuman Signal Processing on Graphs February 11, 2013 14 / 35• Application of graph signal processing techniques to real science and
engineering problems is in its infancy

• Connections with “traditional” signal processing, machine learning, …

Thank	you	!

71

