Convex Optimization in Machine Learning and Inverse Problems

Part 3: Augmented Lagrangian Methods

Mário A. T. Figueiredo ${ }^{1}$ and Stephen J. Wright ${ }^{2}$
${ }^{1}$ Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal
${ }^{2}$ Computer Sciences Department, University of Wisconsin, Madison, WI, USA

Condensed version of ICCOPT tutorial, Lisbon, Portugal, 2013

Augmented Lagrangian Methods

- Consider a linearly constrained problem,

$$
\min f(x) \text { s.t. } A x=b
$$

where f is a proper, lower semi-continuous, convex function.

- The augmented Lagrangian is (with $\rho>0$)

$$
\mathcal{L}(x, \lambda ; \rho):=\underbrace{f(x)+\lambda^{T}(A x-b)}_{\text {Lagrangian }}+\underbrace{\frac{\rho}{2}\|A x-b\|_{2}^{2}}_{\text {"augmentation" }}
$$

Augmented Lagrangian Methods

- Consider a linearly constrained problem,

$$
\min f(x) \text { s.t. } A x=b
$$

where f is a proper, lower semi-continuous, convex function.

- The augmented Lagrangian is (with $\rho>0$)

$$
\mathcal{L}(x, \lambda ; \rho):=\underbrace{f(x)+\lambda^{T}(A x-b)}_{\text {Lagrangian }}+\underbrace{\frac{\rho}{2}\|A x-b\|_{2}^{2}}_{\text {"augmentation" }}
$$

- Basic augmented Lagrangian (a.k.a. method of multipliers) is

$$
\begin{aligned}
& x_{k}=\arg \min _{x} \mathcal{L}\left(x, \lambda_{k-1} ; \rho\right) \\
& \lambda_{k}=\lambda_{k-1}+\rho\left(A x_{k}-b\right)
\end{aligned}
$$

A Favorite Derivation

...more or less rigorous for convex f.

- Write the problem as

$$
\min _{x} \max _{\lambda} f(x)+\lambda^{T}(A x-b) .
$$

Obviously, the max w.r.t. λ will be $+\infty$, unless $A x=b$, so this is equivalent to the original problem.

A Favorite Derivation

...more or less rigorous for convex f.

- Write the problem as

$$
\min _{x} \max _{\lambda} f(x)+\lambda^{T}(A x-b) .
$$

Obviously, the max w.r.t. λ will be $+\infty$, unless $A x=b$, so this is equivalent to the original problem.

- This equivalence is not very useful, computationally: the $\max _{\lambda}$ function is highly nonsmooth w.r.t. x. Smooth it by adding a "proximal point" term, penalizing deviations from a prior estimate $\bar{\lambda}$:

$$
\min _{x}\left\{\max _{\lambda} f(x)+\lambda^{T}(A x-b)-\frac{1}{2 \rho}\|\lambda-\bar{\lambda}\|^{2}\right\} .
$$

A Favorite Derivation

...more or less rigorous for convex f.

- Write the problem as

$$
\min _{x} \max _{\lambda} f(x)+\lambda^{T}(A x-b)
$$

Obviously, the max w.r.t. λ will be $+\infty$, unless $A x=b$, so this is equivalent to the original problem.

- This equivalence is not very useful, computationally: the $\max _{\lambda}$ function is highly nonsmooth w.r.t. x. Smooth it by adding a "proximal point" term, penalizing deviations from a prior estimate $\bar{\lambda}$:

$$
\min _{x}\left\{\max _{\lambda} f(x)+\lambda^{T}(A x-b)-\frac{1}{2 \rho}\|\lambda-\bar{\lambda}\|^{2}\right\}
$$

- Maximization w.r.t. λ is now trivial (a concave quadratic), yielding

$$
\lambda=\bar{\lambda}+\rho(A x-b)
$$

A Favorite Derivation (Cont.)

- Inserting $\lambda=\bar{\lambda}+\rho(A x-b)$ leads to

$$
\min _{x} f(x)+\bar{\lambda}^{T}(A x-b)+\frac{\rho}{2}\|A x-b\|^{2}=\mathcal{L}(x, \bar{\lambda} ; \rho) .
$$

A Favorite Derivation (Cont.)

- Inserting $\lambda=\bar{\lambda}+\rho(A x-b)$ leads to

$$
\min _{x} f(x)+\bar{\lambda}^{T}(A x-b)+\frac{\rho}{2}\|A x-b\|^{2}=\mathcal{L}(x, \bar{\lambda} ; \rho) .
$$

- Hence can view the augmented Lagrangian process as:
$\diamond \min _{x} \mathcal{L}(x, \bar{\lambda} ; \rho)$ to get new x;
\diamond Shift the "prior" on λ by updating to the latest max: $\bar{\lambda}+\rho(A x-b)$.
\diamond repeat until convergence.

A Favorite Derivation (Cont.)

- Inserting $\lambda=\bar{\lambda}+\rho(A x-b)$ leads to

$$
\min _{x} f(x)+\bar{\lambda}^{T}(A x-b)+\frac{\rho}{2}\|A x-b\|^{2}=\mathcal{L}(x, \bar{\lambda} ; \rho) .
$$

- Hence can view the augmented Lagrangian process as:
$\diamond \min _{x} \mathcal{L}(x, \bar{\lambda} ; \rho)$ to get new x;
\diamond Shift the "prior" on λ by updating to the latest max: $\bar{\lambda}+\rho(A x-b)$.
\diamond repeat until convergence.
- Add subscripts, and we recover the augmented Lagrangian algorithm of the first slide!
- Can also increase ρ (to sharpen the effect of the prox term), if needed.

Inequality Constraints, Nonlinear Constraints

- The same derivation can be used for inequality constraints:

$$
\min f(x) \text { s.t. } A x \geq b
$$

- Apply the same reasoning to the constrained min-max formulation:

$$
\min _{x} \max _{\lambda \geq 0} f(x)-\lambda^{T}(A x-b) .
$$

Inequality Constraints, Nonlinear Constraints

- The same derivation can be used for inequality constraints:

$$
\min f(x) \text { s.t. } A x \geq b
$$

- Apply the same reasoning to the constrained min-max formulation:

$$
\min _{x} \max _{\lambda \geq 0} f(x)-\lambda^{T}(A x-b)
$$

- After the prox-term is added, can find the minimizing λ in closed form (as for prox-operators). Leads to update formula:

$$
\max (\bar{\lambda}+\rho(A x-b), 0)
$$

- This derivation extends immediately to nonlinear constraints $c(x)=0$ or $c(x) \geq 0$.

"Explicit" Constraints, Inequality Constraints

- There may be other constraints on x (such as $x \in \Omega$) that we prefer to handle explicitly in the subproblem.
- For the formulation $\min _{x} f(x)$, s.t. $A x=b, x \in \Omega$, the $\min _{x}$ step can enforce $x \in \Omega$ explicitly:

$$
\begin{aligned}
& x_{k}=\arg \min _{x \in \Omega} \mathcal{L}\left(x, \lambda_{k-1} ; \rho\right) ; \\
& \lambda_{k}=\lambda_{k-1}+\rho\left(A_{k}-b\right) ;
\end{aligned}
$$

"Explicit" Constraints, Inequality Constraints

- There may be other constraints on x (such as $x \in \Omega$) that we prefer to handle explicitly in the subproblem.
- For the formulation $\min _{x} f(x)$, s.t. $A x=b, x \in \Omega$, the $\min _{x}$ step can enforce $x \in \Omega$ explicitly:

$$
\begin{aligned}
& x_{k}=\arg \min _{x \in \Omega} \mathcal{L}\left(x, \lambda_{k-1} ; \rho\right) \\
& \lambda_{k}=\lambda_{k-1}+\rho\left(A x_{k}-b\right)
\end{aligned}
$$

- This gives an alternative way to handle inequality constraints: introduce slacks s, and enforce them explicitly. That is, replace

$$
\min _{x} f(x) \text { s.t. } c(x) \geq 0
$$

by

$$
\min _{x} f(x) \text { s.t. } c(x)=s, \quad s \geq 0
$$

"Explicit" Constraints, Inequality Constraints (Cont.)

- The augmented Lagrangian is now

$$
\mathcal{L}(x, s, \lambda ; \rho):=f(x)+\lambda^{T}(c(x)-s)+\frac{\rho}{2}\|c(x)-s\|_{2}^{2}
$$

- Enforce $s \geq 0$ explicitly in the subproblem:

$$
\begin{aligned}
\left(x_{k}, s_{k}\right) & =\arg \min _{x, s} \mathcal{L}\left(x, s, \lambda_{k-1} ; \rho\right), \text { s.t. } s \geq 0 \\
\lambda_{k} & =\lambda_{k-1}+\rho\left(c\left(x_{k}\right)-s_{k}\right)
\end{aligned}
$$

- The augmented Lagrangian is now

$$
\mathcal{L}(x, s, \lambda ; \rho):=f(x)+\lambda^{T}(c(x)-s)+\frac{\rho}{2}\|c(x)-s\|_{2}^{2}
$$

- Enforce $s \geq 0$ explicitly in the subproblem:

$$
\begin{aligned}
\left(x_{k}, s_{k}\right) & =\arg \min _{x, s} \mathcal{L}\left(x, s, \lambda_{k-1} ; \rho\right), \text { s.t. } s \geq 0 ; \\
\lambda_{k} & =\lambda_{k-1}+\rho\left(c\left(x_{k}\right)-s_{k}\right)
\end{aligned}
$$

- There are good algorithmic options for dealing with bound constraints $s \geq 0$ (gradient projection and its enhancements). This is used in the Lancelot code (Conn et al., 1992).

Quick History of Augmented Lagrangian

- Dates from at least 1969: Hestenes, Powell.
- Developments in 1970s, early 1980s by Rockafellar, Bertsekas, and others.
- Lancelot code for nonlinear programming: Conn, Gould, Toint, around 1992 (Conn et al., 1992).
- Lost favor somewhat as an approach for general nonlinear programming during the next 15 years.
- Recent revival in the context of sparse optimization and its many applications, in conjunction with splitting / coordinate descent.

Alternating Direction Method of Multipliers (ADMM)

- Consider now problems with a separable objective of the form

$$
\min _{(x, z)} f(x)+h(z) \quad \text { s.t. } \quad A x+B z=c
$$

for which the augmented Lagrangian is
$\mathcal{L}(x, z, \lambda ; \rho):=f(x)+h(z)+\lambda^{T}(A x+B z-c)+\frac{\rho}{2}\|A x-B z-c\|_{2}^{2}$.

Alternating Direction Method of Multipliers (ADMM)

- Consider now problems with a separable objective of the form

$$
\min _{(x, z)} f(x)+h(z) \quad \text { s.t. } \quad A x+B z=c
$$

for which the augmented Lagrangian is

$$
\mathcal{L}(x, z, \lambda ; \rho):=f(x)+h(z)+\lambda^{T}(A x+B z-c)+\frac{\rho}{2}\|A x-B z-c\|_{2}^{2}
$$

- Standard AL would minimize $\mathcal{L}(x, z, \lambda ; \rho)$ w.r.t. (x, z) jointly. However, these are coupled in the quadratic term, separability is lost

Alternating Direction Method of Multipliers (ADMM)

- Consider now problems with a separable objective of the form

$$
\min _{(x, z)} f(x)+h(z) \quad \text { s.t. } \quad A x+B z=c
$$

for which the augmented Lagrangian is

$$
\mathcal{L}(x, z, \lambda ; \rho):=f(x)+h(z)+\lambda^{T}(A x+B z-c)+\frac{\rho}{2}\|A x-B z-c\|_{2}^{2}
$$

- Standard AL would minimize $\mathcal{L}(x, z, \lambda ; \rho)$ w.r.t. (x, z) jointly. However, these are coupled in the quadratic term, separability is lost
- In ADMM, minimize over x and z separately and sequentially:

$$
\begin{aligned}
& x_{k}=\arg \min _{x} \mathcal{L}\left(x, z_{k-1}, \lambda_{k-1} ; \rho\right) \\
& z_{k}=\arg \min _{z} \mathcal{L}\left(x_{k}, z, \lambda_{k-1} ; \rho\right) \\
& \lambda_{k}=\lambda_{k-1}+\rho\left(A x_{k}+B z_{k}-c\right)
\end{aligned}
$$

ADMM

Main features of ADMM:

- Does one cycle of block-coordinate descent in (x, z).
- The minimizations over x and z add only a quadratic term to f and h, respectively. Usually does not alter the cost much.
- Can perform the (x, z) minimizations inexactly.
- Can add explicit (separated) constraints: $x \in \Omega_{x}, z \in \Omega_{z}$.
- Many (many!) recent applications to compressed sensing, image processing, matrix completion, sparse principal components analysis....

ADMM has a rich collection of antecendents, dating even to the 1950s (operator splitting).

For an comprehensive recent survey, including a diverse collection of machine learning applications, see Boyd et al. (2011).

ADMM: A Simpler Form

- Often, a simpler version is enough: $\min _{(x, z)} f(x)+h(z)$ s.t. $A x=z$, equivalent to $\min _{x} f(x)+h(A x)$, often the one of interest.

ADMM: A Simpler Form

- Often, a simpler version is enough: $\min _{(x, z)} f(x)+h(z)$ s.t. $A x=z$, equivalent to $\min _{x} f(x)+h(A x)$, often the one of interest.
- In this case, the ADMM can be written as

$$
\begin{aligned}
& x_{k}=\arg \min _{x} f(x)+\frac{\rho}{2}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2} \\
& z_{k}=\arg \min _{z} h(z)+\frac{\rho}{2}\left\|A x_{k}-z-d_{k-1}\right\|_{2}^{2} \\
& d_{k}=d_{k-1}-\left(A x_{k}-z_{k}\right)
\end{aligned}
$$

the so-called "scaled version" (Boyd et al., 2011).

ADMM: A Simpler Form

- Often, a simpler version is enough: $\min _{(x, z)} f(x)+h(z)$ s.t. $A x=z$, equivalent to $\min _{x} f(x)+h(A x)$, often the one of interest.
- In this case, the ADMM can be written as

$$
\begin{aligned}
& x_{k}=\arg \min _{x} f(x)+\frac{\rho}{2}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2} \\
& z_{k}=\arg \min _{z} h(z)+\frac{\rho}{2}\left\|A x_{k}-z-d_{k-1}\right\|_{2}^{2} \\
& d_{k}=d_{k-1}-\left(A x_{k}-z_{k}\right)
\end{aligned}
$$

the so-called "scaled version" (Boyd et al., 2011).

- Updating z_{k} is a proximity computation: $z_{k}=\operatorname{prox}_{h / \rho}\left(A x_{k-1}-d_{k-1}\right)$

ADMM: A Simpler Form

- Often, a simpler version is enough: $\min _{(x, z)} f(x)+h(z)$ s.t. $A x=z$, equivalent to $\min _{x} f(x)+h(A x)$, often the one of interest.
- In this case, the ADMM can be written as

$$
\begin{aligned}
& x_{k}=\arg \min _{x} f(x)+\frac{\rho}{2}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2} \\
& z_{k}=\arg \min _{z} h(z)+\frac{\rho}{2}\left\|A x_{k}-z-d_{k-1}\right\|_{2}^{2} \\
& d_{k}=d_{k-1}-\left(A x_{k}-z_{k}\right)
\end{aligned}
$$

the so-called "scaled version" (Boyd et al., 2011).

- Updating z_{k} is a proximity computation: $z_{k}=\operatorname{prox}_{h / \rho}\left(A x_{k-1}-d_{k-1}\right)$
- Updating x_{k} may be hard: if f is quadratic, involves matrix inversion; if f is not quadratic, may be as hard as the original problem.

ADMM: Convergence

- Consider the problem $\min _{x} f(x)+h(A x)$, where f and h are lower semi-continuous, proper, convex functions and A has full column rank.

ADMM: Convergence

- Consider the problem $\min _{x} f(x)+h(A x)$, where f and h are lower semi-continuous, proper, convex functions and A has full column rank.
- The ADMM algorithm presented in the previous slide converges (for any $\rho>0$) to a solution x^{*}, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

ADMM: Convergence

- Consider the problem $\min _{x} f(x)+h(A x)$, where f and h are lower semi-continuous, proper, convex functions and A has full column rank.
- The ADMM algorithm presented in the previous slide converges (for any $\rho>0$) to a solution x^{*}, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

- As in IST/FBS/PGA, convergence is still guaranteed with inexactly solved subproblems, as long as the errors are absolutely summable.

ADMM: Convergence

- Consider the problem $\min _{x} f(x)+h(A x)$, where f and h are lower semi-continuous, proper, convex functions and A has full column rank.
- The ADMM algorithm presented in the previous slide converges (for any $\rho>0$) to a solution x^{*}, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

- As in IST/FBS/PGA, convergence is still guaranteed with inexactly solved subproblems, as long as the errors are absolutely summable.
- The recent explosion of interest in ADMM is quite clear in the citation record of the paper by Eckstein and Bertsekas (1992).

ADMM for a More General Problem

- Consider the problem $\min _{x \in \mathbb{R}^{n}} \sum_{i=1}^{J} g_{j}\left(H^{(j)} x\right)$, where $H^{(j)} \in \mathbb{R}^{p_{j} \times n}$, and g_{1}, \ldots, g_{J} are I.s.c proper convex fuctions.
- Map it into $\min _{x} f(x)+h(A x)$ as follows (with $p=p 1+\cdots+p_{J}$):

$$
\diamond f(x)=0
$$

$\diamond A=\left[\begin{array}{c}H^{(1)} \\ \vdots \\ H^{(J)}\end{array}\right] \in \mathbb{R}^{p \times n}$,

$$
\diamond h: \mathbb{R}^{p_{1}+\cdots+p_{J}} \rightarrow \overline{\mathbb{R}}, \quad h\left(\left[\begin{array}{c}
z^{(1)} \\
\vdots \\
z^{(J)}
\end{array}\right]\right)=\sum_{j=1}^{J} g_{j}\left(z^{(j)}\right)
$$

- We'll see next that this leads to a very convenient version of ADMM.

ADMM for a More General Problem (Cont.)

Resulting instance of

$$
x_{k}=\arg \min _{x}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2}
$$

ADMM for a More General Problem (Cont.)

Resulting instance of

$$
x_{k}=\arg \min _{x}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2}=\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T} H^{(j)}\right)^{-1}\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T}\left(z_{k-1}^{(j)}+d_{k-1}^{(j)}\right)\right)
$$

ADMM for a More General Problem (Cont.)

Resulting instance of

$$
x_{k}=\arg \min _{x}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2}=\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T} H^{(j)}\right)^{-1}\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T}\left(z_{k-1}^{(j)}+d_{k-1}^{(j)}\right)\right)
$$

$$
z_{k}^{(1)}=\arg \min _{u} g_{1}+\frac{\rho}{2}\left\|u-H^{(1)} x_{k-1}+d_{k-1}^{(1)}\right\|_{2}^{2}
$$

$$
z_{k}^{(J)}=\arg \min _{u} g_{J}+\frac{\rho}{2}\left\|u-H^{(J)} x_{k-1}+d_{k-1}^{(J)}\right\|_{2}^{2}
$$

ADMM for a More General Problem (Cont.)

Resulting instance of

$$
x_{k}=\arg \min _{x}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2}=\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T} H^{(j)}\right)^{-1}\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T}\left(z_{k-1}^{(j)}+d_{k-1}^{(j)}\right)\right)
$$

$$
z_{k}^{(1)}=\arg \min _{u} g_{1}+\frac{\rho}{2}\left\|u-H^{(1)} x_{k-1}+d_{k-1}^{(1)}\right\|_{2}^{2}=\operatorname{prox}_{g_{1} / \rho}\left(H^{(1)} x_{k-1}-d_{k-1}^{(1)}\right)
$$

$$
z_{k}^{(J)}=\arg \min _{u} g_{J}+\frac{\rho}{2}\left\|u-H^{(J)} x_{k-1}+d_{k-1}^{(J)}\right\|_{2}^{2}=\operatorname{prox}_{g_{J} / \rho}\left(H^{(J)} x_{k-1}-d_{k-1}^{(J)}\right)
$$

ADMM for a More General Problem (Cont.)

Resulting instance of

$$
\begin{aligned}
x_{k} & =\arg \min _{x}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2}=\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T} H^{(j)}\right)^{-1}\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T}\left(z_{k-1}^{(j)}+d_{k-1}^{(j)}\right)\right) \\
z_{k}^{(1)} & =\arg \min _{u} g_{1}+\frac{\rho}{2}\left\|u-H^{(1)} x_{k-1}+d_{k-1}^{(1)}\right\|_{2}^{2}=\operatorname{prox}_{g_{1} / \rho}\left(H^{(1)} x_{k-1}-d_{k-1}^{(1)}\right) \\
\vdots & \vdots \\
z_{k}^{(J)} & =\arg \min _{u} g_{J}+\frac{\rho}{2}\left\|u-H^{(J)} x_{k-1}+d_{k-1}^{(J)}\right\|_{2}^{2}=\operatorname{prox}_{g_{J} / \rho}\left(H^{(J)} x_{k-1}-d_{k-1}^{(J)}\right) \\
d_{k} & =d_{k-1}-A x_{k}+z_{k}
\end{aligned}
$$

ADMM for a More General Problem (Cont.)

Resulting instance of

$$
x_{k}=\arg \min _{x}\left\|A x-z_{k-1}-d_{k-1}\right\|_{2}^{2}=\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T} H^{(j)}\right)^{-1}\left(\sum_{j=1}^{J}\left(H^{(j)}\right)^{T}\left(z_{k-1}^{(j)}+d_{k-1}^{(j)}\right)\right)
$$

$$
z_{k}^{(1)}=\arg \min _{u} g_{1}+\frac{\rho}{2}\left\|u-H^{(1)} x_{k-1}+d_{k-1}^{(1)}\right\|_{2}^{2}=\operatorname{prox}_{g_{1} / \rho}\left(H^{(1)} x_{k-1}-d_{k-1}^{(1)}\right)
$$

$$
\begin{aligned}
z_{k}^{(J)} & =\arg \min _{u} g_{J}+\frac{\rho}{2}\left\|u-H^{(J)} x_{k-1}+d_{k-1}^{(J)}\right\|_{2}^{2}=\operatorname{prox}_{g_{J} / \rho}\left(H^{(J)} x_{k-1}-d_{k-1}^{(J)}\right) \\
d_{k} & =d_{k-1}-A x_{k}+z_{k}
\end{aligned}
$$

Key features: matrices are handled separately from the prox operators; the prox operators are decoupled (can be computed in parallel); requires a matrix inversion (can be a curse or a blessing).
(Afonso et al., 2010; Setzer et al., 2010; Combettes and Pesquet, 2011)

Example: Image Restoration using SALSA

Problem: $\quad \widehat{\mathbf{x}} \in \arg \min _{\mathbf{x}} \frac{1}{2}\|\mathbf{A x}-\mathbf{y}\|_{2}^{2}+\tau\|\mathbf{P} \mathbf{x}\|_{1}$
Template: $\min _{\mathbf{z} \in \mathbb{R}^{d}} \sum_{j=1}^{J} g_{j}\left(\mathbf{H}^{(j)} \mathbf{z}\right)$
Mapping: $J=2, \quad g_{1}(\mathbf{z})=\frac{1}{2}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}, \quad g_{2}(\mathbf{z})=\tau\|\mathbf{z}\|_{1}$

$$
\mathbf{H}^{(1)}=\mathbf{A}
$$

$$
\mathbf{H}^{(2)}=\mathbf{P}
$$

Convergence conditions: g_{1} and g_{2} are closed, proper, and convex.

$$
\mathbf{G}=\left[\begin{array}{l}
\mathbf{A} \\
\mathbf{P}
\end{array}\right] \quad \text { has full column rank. }
$$

Resulting algorithm: SALSA
(split augmented Lagrangian shrinkage algorithm) [Afonso, Bioucas-Dias, F, 2009, 2010]

Example: Image Restoration using SALSA

Key steps of SALSA:

Moreau proximity operator of $g_{1}(\mathbf{z})=\frac{1}{2}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}$,

$$
\operatorname{prox}_{g_{1} / \mu}(\mathbf{u})=\arg \min _{\mathbf{z}} \frac{1}{2 \mu}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}+\frac{1}{2}\|\mathbf{z}-\mathbf{u}\|_{2}^{2}=\frac{\mathbf{y}+\mu \mathbf{u}}{1+\mu}
$$

Moreau proximity operator of $g_{2}(\mathbf{z})=\tau\|\mathbf{z}\|_{1}$,

$$
\operatorname{prox}_{g_{2} / \mu}(\mathbf{u})=\operatorname{soft}(\mathbf{u}, \tau / \mu)
$$

Matrix inversion:

$$
\mathbf{z}_{k+1}=\left[\mathbf{A}^{*} \mathbf{A}+\mathbf{P}^{*} \mathbf{P}\right]^{-1}\left(\mathbf{A}^{*}\left(\mathbf{u}_{k}^{(1)}+\mathbf{d}_{k}^{(1)}\right)+\mathbf{P}^{*}\left(\mathbf{u}_{k}^{(2)}+\mathbf{d}_{k}^{(2)}\right)\right)
$$

Example: Image Restoration using SALSA

Problem: $\quad \widehat{\mathbf{x}} \in \arg \min _{\mathbf{x}} \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{y}\|_{2}^{2}+\tau\|\mathbf{x}\|_{1}$
Template: $\min _{\mathbf{z} \in \mathbb{R}^{d}} \sum_{j=1}^{J} g_{j}\left(\mathbf{H}^{(j)} \mathbf{z}\right) \quad \mathbf{A}=\underset{\underbrace{}_{\text {synthesis matrix }}}{\mathbf{B}}$
Mapping: $J=2, \quad g_{1}(\mathbf{z})=\frac{1}{2}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}, \quad g_{2}(\mathbf{z})=\tau\|\mathbf{z}\|_{1}$

$$
\mathbf{H}^{(1)}=\mathbf{A}=\mathbf{B W} \quad \mathbf{H}^{(2)}=\mathbf{I}
$$

Convergence conditions: g_{1} and g_{2} are closed, proper, and convex.

$$
\mathbf{G}=\left[\begin{array}{c}
\mathbf{B} \mathbf{W} \\
\mathbf{I}
\end{array}\right] \text { has full column rank. }
$$

Example: Image Restoration using SALSA

Frame-based analysis: $\left[\sum_{j=1}^{J}\left(\mathbf{H}^{(j)}\right)^{*} \mathbf{H}^{(j)}\right]^{-1}=\left[\mathbf{W}^{*} \mathbf{B}^{*} \mathbf{B} \mathbf{W}+\mathbf{I}\right]^{-1}$

subsampling matrix: $\mathbf{M M}^{*}=\mathbf{I}$
Compressive imaging (MRI): $\mathbf{B}=\mathbf{M U}$
$O(n \log n) \quad\left[\mathbf{W}^{*} \mathbf{U}^{*} \mathbf{M}^{*} \mathbf{M} \mathbf{U W}+\mathbf{I}\right]^{-1}=\mathbf{I}-\frac{1}{2} \mathbf{W}^{*} \mathbf{U}^{*} \mathbf{M}^{*} \mathbf{M} \mathbf{U W}$
Inpainting (recovery of lost pixels): $\mathbf{B}=\mathbf{S}$
$O(n \log n) \quad\left[\mathbf{W}^{*} \mathbf{S}^{*} \mathbf{S W}+\mathbf{I}\right]^{-1}=\mathbf{I}-\frac{1}{2} \mathbf{W}^{*} \mathbf{S}^{*} \mathbf{S W}^{*}$

Example: Image Restoration using SALSA

undecimated Haar frame, ℓ_{1} regularization.

TV regularization

Example: Image Restoration using SALSA

Image inpainting (50\% missing)

Alg.	Calls to B, B	Iter.	CPU time (sec.)	MSE MSE	ISNR (dB)
FISTA	1022	340	263.8	92.01	18.96
TwIST	271	124	112.7	100.92	18.54
SALSA	84	28	20.88	77.61	19.68

Conjecture: SALSA is fast because it's blessed by the matrix inversion The inverted matrix (e.g., $\mathbf{A}^{*} \mathbf{A}+\mathbf{I}$) is (almost) the Hessian of the data term; ...second-order (curvature) information (as Newton's method)

ADMM for the Morozov Formulation

Unconstrained optimization formulation: $\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{y}\|_{2}^{2}+\tau c(\mathbf{x})$

Constrained optimization (Morozov) formulation: $\min _{\mathbf{x}} c(\mathbf{x})$
basis pursuit denoising, if $c(\mathbf{x})=\|\mathbf{x}\|_{1}$
[Chen, Donoho, Saunders, 1998]
s.t. $\|\mathbf{A x}-\mathbf{y}\|_{2}^{2} \leq \varepsilon$

Both analysis and synthesis can be used:

- frame-based analysis,
- frame-based synthesis

$$
c(\mathbf{x})=\|\mathbf{P} \mathbf{x}\|_{1}
$$

$$
c(\mathbf{x})=\|\mathbf{x}\|_{1}
$$

$$
\mathbf{A}=\mathbf{B} \mathbf{W}
$$

ADMM for the Morozov Formulation

Constrained problem: $\min _{\mathbf{x}} c(\mathbf{x})$

$$
\text { s.t. }\|\mathbf{A x}-\mathbf{y}\|_{2}^{2} \leq \varepsilon
$$

...can be written as

$$
\begin{aligned}
& \min _{\mathbf{x}} c(\mathbf{x})+\iota_{\mathcal{B}(\varepsilon, \mathbf{y})}(\mathbf{A} \mathbf{x}) \\
& \mathcal{B}(\varepsilon, \mathbf{y})=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}-\mathbf{y}\|_{2} \leq \varepsilon\right\}
\end{aligned}
$$

...which has the form $\min _{\mathbf{u} \in \mathbb{R}^{d}} \sum_{j=1}^{J} g_{j}\left(\mathbf{H}^{(j)} \mathbf{u}\right) \quad(P 1)$
with $J=2, \quad g_{1}(\mathbf{z})=c(\mathbf{z}), \quad \mathbf{H}^{(1)}=\mathbf{I}$

$$
g_{2}(\mathbf{z})=\iota_{E(\varepsilon, \mathbf{y})}(\mathbf{z}), \quad \mathbf{H}^{(2)}=\mathbf{A}
$$

$$
\mathbf{G}=\left[\begin{array}{l}
\mathbf{I} \\
\mathbf{A}
\end{array}\right]
$$

full column rank

Resulting algorithm: C-SALSA (constrained-SALSA)
[Afonso, Bioucas-Dias, F, 2010,2011]

ADMM for the Morozov Formulation

Moreau proximity operator of $\iota_{\mathcal{B}(\varepsilon, \mathbf{y})}$ is simply a projection on an ℓ_{2} ball:

$$
\begin{aligned}
\operatorname{prox}_{\iota_{\mathcal{B}(\varepsilon, \mathbf{y})}}(\mathbf{u}) & =\arg \min _{\mathbf{z}} \iota_{\mathcal{B}(\varepsilon, \mathbf{y})}+\frac{1}{2}\|\mathbf{z}-\mathbf{u}\|_{2}^{2} \\
& = \begin{cases}\mathbf{u} & \Leftarrow\|\mathbf{u}-\mathbf{y}\|_{2} \leq \varepsilon \\
\mathbf{y}+\frac{\varepsilon(\mathbf{u}-\mathbf{y})}{\|\mathbf{u}-\mathbf{y}\|_{2}} & \Leftarrow\|\mathbf{u}-\mathbf{y}\|_{2}>\varepsilon\end{cases}
\end{aligned}
$$

As SALSA, also C-SALSA involves inversion of the form

$$
\left[\mathbf{W}^{*} \mathbf{B}^{*} \mathbf{B W}+\mathbf{I}\right]^{-1} \quad \text { or } \quad\left[\mathbf{B}^{*} \mathbf{B}+\mathbf{P}^{*} \mathbf{P}\right]^{-1}
$$

...all the same tricks as above.

ADMM for the Morozov Formulation

Image deconvolution benchmark problems:

Experiment	blur kernel	σ^{2}
I	9×9 uniform	0.56^{2}
2A	Gaussian	2
2B	Gaussian	8
3A	$h_{i j}=1 /\left(1+i^{2}+j^{2}\right)$	2
3B	$h_{i j}=1 /\left(1+i^{2}+j^{2}\right)$	8

NESTA: [Becker, Bobin, Candès, 2011]
SPGL1: [van den Berg, Friedlander, 2009]

Frame-synthesis

Expt.	Avg. calls to $\mathbf{B}, \mathrm{B}^{H}$ (min/max)			Iterations			CPU time (seconds)		
	SPGL1	NESTA	C-SALSA	SPGL1	NESTA	C-SALSA	SPGLI	NESTA	C-SALSA
	1029 (659/1290)	3520 (3501/3541)	398 (388/406)	340	880	134	441.16	590.79	100.72
2A	511 (2791663)	4897 (4777/4981)	451 (442/460)	160	1224	136	202.67	798.81	98.85
2B	377 (141/532)	3397 (3345/3473)	362 (355/370)	98	849	109	120.50	557.02	81.69
3A	675 (378/772)	2622 (2589/2661)	172 (166/175)	235	656	58	266.41	423.41	42.56
3B	404 (300/475)	2446 (2401/2485)	134 (130/136)	147	551	41	161.17	354.59	29.57

Frame-analysis

Expt.	Avg. calls to B, $\mathbf{B}^{\boldsymbol{H}}(\mathrm{min} / \mathrm{max})$		Iterations		CPU time (seconds)	
	NESTA	C-SALSA	NESTA	C-SALSA	NESTA	C-SALSA
1	$2881(2861 / 2889)$	$413(404 / 419)$	720	138	353.88	80.32
2A	$2451(2377 / 2505)$	$362(344 / 371)$	613	109	291.14	62.65
2B	$2139(2065 / 2197)$	$290(278 / 299)$	535	87	254.94	50.14
3A	$2203(2181 / 2217)$	$137(134 / 143)$	551	42	261.89	23.83
3B	$1967(1949 / 1985)$	$116(113 / 119)$	492	39	236.45	22.38

Total-variation

Expt.	Avg. calls to B, $\mathbf{B}^{H}(\mathrm{~min} / \mathrm{max})$		Iterations		CPU time (seconds)	
	NESTA	C-SALSA	NESTA	C-SALSA	NESTA	C-SALSA
1	$7783(7767 / 7795)$	$695(680 / 710)$	1945	232	311.98	62.56
2A	$7323(7291 / 7351)$	$559(536 / 578)$	1830	150	279.36	38.63
2B	$6828(6775 / 6883)$	$299(269 / 329)$	1707	100	265.35	25.47
3A	$6594(6513 / 6661)$	$176(98 / 209)$	1649	59	250.37	15.08
3B	$5514(5417 / 5585)$	$108(104 / 110)$	1379	37	210.94	9.23

References

Afonso, M., Bioucas-Dias, J., and Figueiredo, M. (2010). Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 19:2345-2356.
Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122.
Combettes, P. and Pesquet, J.-C. (2011). Signal recovery by proximal forward-backward splitting. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185-212. Springer.

Conn, A., Gould, N., and Toint, P. (1992). LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A). Springer Verlag, Heidelberg.
Eckstein, J. and Bertsekas, D. (1992). On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming, 5:293-318.

Hestenes, M. (1969). Multiplier and gradient methods. Journal of Optimization Theory and Applications, 4:303-320.
Powell, M. (1969). A method for nonlinear constraints in minimization problems. In Fletcher, R., editor, Optimization, pages 283-298. Academic Press, New York.

Setzer, S., Steidl, G., and Teuber, T. (2010). Deblurring poissonian images by split bregman techniques. Journal of Visual Communication and Image Representation, 21:193-199.

