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Augmented Lagrangian Methods

o Consider a linearly constrained problem,
min f(x) s.t. Ax = b.
where f is a proper, lower semi-continuous, convex function.

@ The augmented Lagrangian is (with p > 0)

L(x, A p) 1= F(x) + AT (Ax — b) + gqu — b|2
——
“augmentation”

Lagrangian
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Augmented Lagrangian Methods

o Consider a linearly constrained problem,
min f(x) s.t. Ax = b.
where f is a proper, lower semi-continuous, convex function.
@ The augmented Lagrangian is (with p > 0)
L(x,X;p) = F(x) + AT (Ax — b) + gqu b2

——
“augmentation”

Lagrangian

o Basic augmented Lagrangian (a.k.a. method of multipliers) is
xx = argmin L(x, Ak—_1; p);
Ak = Ak—1 + p(Axk — b);

(Hestenes, 1969; Powell, 1969)
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A Favorite Derivation

...more or less rigorous for convex f.

@ Write the problem as
min max f(x) + AT(Ax — b).
X

Obviously, the max w.r.t. A will be +00, unless Ax = b, so this is
equivalent to the original problem.
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A Favorite Derivation

...more or less rigorous for convex f.

@ Write the problem as
min max f(x) + AT(Ax — b).
X
Obviously, the max w.r.t. A will be +00, unless Ax = b, so this is
equivalent to the original problem.

o This equivalence is not very useful, computationally: the max)
function is highly nonsmooth w.r.t. x. Smooth it by adding a
“proximal point” term, penalizing deviations from a prior estimate A:

1 _
- T(Av _ B) — 2 1Y _ X112
min {mfx f(x)+ A" (Ax —b) 2p||)\ Al }
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A Favorite Derivation

...more or less rigorous for convex f.

@ Write the problem as
min max f(x) + AT(Ax — b).
X
Obviously, the max w.r.t. A will be +00, unless Ax = b, so this is
equivalent to the original problem.

o This equivalence is not very useful, computationally: the max)
function is highly nonsmooth w.r.t. x. Smooth it by adding a
“proximal point” term, penalizing deviations from a prior estimate A:

1 _
- T(Av _ B) — 2 1Y _ X112
min {mfx f(x)+ A" (Ax —b) ZPH)\ Al }

o Maximization w.r.t. A is now trivial (a concave quadratic), yielding
A= X+ p(Ax — b).
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A Favorite Derivation (Cont.)

o Inserting A = A + p(Ax — b) leads to

min £(x) + A7 (Ax — b) + §||Ax — b1 = L(x, X; p).
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A Favorite Derivation (Cont.)

o Inserting A = A + p(Ax — b) leads to
: T P 2 _ 3.
min f(x) + X' (Ax — b) + §||Ax — b||* = L(x, A\ p).
X
@ Hence can view the augmented Lagrangian process as:
o min, £(x,\; p) to get new x;

o Shift the “prior” on X by updating to the latest max: A + p(Ax — b).

© repeat until convergence.
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A Favorite Derivation (Cont.)

o Inserting A = A + p(Ax — b) leads to

min £(x) + A7 (Ax — b) + gHAx — b1 = L(x, X; p).

@ Hence can view the augmented Lagrangian process as:
o min, £(x,\; p) to get new x;
o Shift the “prior” on X by updating to the latest max: A + p(Ax — b).

© repeat until convergence.

o Add subscripts, and we recover the augmented Lagrangian algorithm
of the first slide!

@ Can also increase p (to sharpen the effect of the prox term), if needed.
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Inequality Constraints, Nonlinear Constraints

@ The same derivation can be used for inequality constraints:

min f(x) s.t. Ax > b.
o Apply the same reasoning to the constrained min-max formulation:

X

i f(x) — AT(Ax — b).
min max (x) = X' (Ax—b)
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Inequality Constraints, Nonlinear Constraints

@ The same derivation can be used for inequality constraints:

min f(x) s.t. Ax > b.
o Apply the same reasoning to the constrained min-max formulation:

X

i f(x) — AT(Ax — b).
min max (x) = A" (Ax = b)

o After the prox-term is added, can find the minimizing A in closed form
(as for prox-operators). Leads to update formula:

max (X + p(Ax — b),0) .

@ This derivation extends immediately to nonlinear constraints
c(x)=0o0rc(x)>0.
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“Explicit” Constraints, Inequality Constraints

@ There may be other constraints on x (such as x € Q) that we prefer
to handle explicitly in the subproblem.

o For the formulation min f(x), st. Ax=b, x€Q,
X
the miny step can enforce x € Q explicitly:

X = argmin L(x, Ak-1; p);

Ak = Ap—1 + p(Axk — b);
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“Explicit” Constraints, Inequality Constraints

@ There may be other constraints on x (such as x € Q) that we prefer
to handle explicitly in the subproblem.

o For the formulation min f(x), st. Ax=b, x€Q,

the miny step can enforce x € Q explicitly:
X, = argmin L(x, Ak_1;p);
k g min (X, k=13 )
Ak = Ap—1 + p(Axk — b);
o This gives an alternative way to handle inequality constraints:
introduce slacks s, and enforce them explicitly. That is, replace

min f(x) s.t. ¢(x) >0,

by
min f(x) s.t. ¢(x)=s, s>0.
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“Explicit” Constraints, Inequality Constraints (Cont.)

o The augmented Lagrangian is now

L(x, 5,7 p) = F(x) + AT (c(x) =) + %)HC(X) — s|l3.

o Enforce s > 0 explicitly in the subproblem:
(xk, sk) = argmin L(x, s, Ak—1;p), s.t. s>0;
X,S

Ak = A1+ p(c(xk) — Sk)
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“Explicit” Constraints, Inequality Constraints (Cont.)

o The augmented Lagrangian is now

L(x, 5,7 p) = F(x) + AT (c(x) =) + %)HC(X) — s|l3.

o Enforce s > 0 explicitly in the subproblem:
(xk, sk) = argmin L(x, s, Ak—1;p), s.t. s>0;
X,S
Ak = A1+ p(c(xk) — Sk)
o There are good algorithmic options for dealing with bound constraints

s > 0 (gradient projection and its enhancements). This is used in the
Lancelot code (Conn et al., 1992).
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Quick History of Augmented Lagrangian

o Dates from at least 1969: Hestenes, Powell.

o Developments in 1970s, early 1980s by Rockafellar, Bertsekas, and
others.

o Lancelot code for nonlinear programming: Conn, Gould, Toint,
around 1992 (Conn et al., 1992).

o Lost favor somewhat as an approach for general nonlinear
programming during the next 15 years.

@ Recent revival in the context of sparse optimization and its many
applications, in conjunction with splitting / coordinate descent.
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Alternating Direction Method of Multipliers (ADMM)

o Consider now problems with a separable objective of the form

min f(x) + h(z) st. Ax+ Bz=c,

X,z

for which the augmented Lagrangian is

L(x,z,\; p) = f(x)+h(z) + \T(Ax + Bz — ¢) + gHAX — Bz — ¢|3.
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Alternating Direction Method of Multipliers (ADMM)

o Consider now problems with a separable objective of the form

min f(x) + h(z) st. Ax+ Bz=c,

for which the augmented Lagrangian is
L(x,z,\; p) = f(x)+h(z) + \T(Ax + Bz — ¢) + gHAx — Bz — ¢|3.

o Standard AL would minimize L£(x, z, A; p) w.r.t. (x, z) jointly.
However, these are coupled in the quadratic term, separability is lost
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Alternating Direction Method of Multipliers (ADMM)

o Consider now problems with a separable objective of the form

min f(x) + h(z) st. Ax+ Bz=c,

for which the augmented Lagrangian is
L(x,z,\; p) = f(x)+h(z) + \T(Ax + Bz — ¢) + gHAX — Bz — ¢|3.

o Standard AL would minimize L£(x, z, A; p) w.r.t. (x, z) jointly.
However, these are coupled in the quadratic term, separability is lost

o In ADMM, minimize over x and z separately and sequentially:
xk = argmin L(x, zxk_1, A\k_1; p);
X
zy = argmin L(xk, z, \k—1; P);
z

e = A1+ p(Axk + Bz, — C).
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ADMM

Main features of ADMM:
@ Does one cycle of block-coordinate descent in (x, z).

@ The minimizations over x and z add only a quadratic term to f and
h, respectively. Usually does not alter the cost much.

Can perform the (x, z) minimizations inexactly.

Can add explicit (separated) constraints: x € Qy, z € Q.

Many (many!) recent applications to compressed sensing, image
processing, matrix completion, sparse principal components analysis....

ADMM has a rich collection of antecendents, dating even to the 1950s
(operator splitting).

For an comprehensive recent survey, including a diverse collection of
machine learning applications, see Boyd et al. (2011).
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ADMM: A Simpler Form

o Often, a simpler version is enough: min f(x) + h(z) s.t. Ax = z,

)

equivalent to min f(x) + h(Ax), often the one of interest.
X
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ADMM: A Simpler Form

o Often, a simpler version is enough: min f(x) + h(z) s.t. Ax = z,

)

equivalent to mXin f(x) 4+ h(Ax), often the one of interest.
@ In this case, the ADMM can be written as
xi = argmin £(x) + §l|Ax — ze-1 — di13
2 = argmin h(z) + §||Axk — z — di1 3
di = dk—1 — (Axk — 2x)

the so-called “scaled version” (Boyd et al., 2011).
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ADMM: A Simpler Form

o Often, a simpler version is enough: min f(x) + h(z) s.t. Ax = z,

)

equivalent to mXin f(x) 4+ h(Ax), often the one of interest.
@ In this case, the ADMM can be written as
Xk = arg mXin f(x)+ 5IIAX — z—1 — di_1)3
2 = argmin h(z) + §||Axk — z — di1 3
di = dk—1 — (Axk — 2x)
the so-called “scaled version” (Boyd et al., 2011).

o Updating z is a proximity computation: zx = prox, , (Axk—1 — dk—1)
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ADMM: A Simpler Form

o Often, a simpler version is enough: min f(x) + h(z) s.t. Ax = z,

equivalent to mXin f(x) 4+ h(Ax), often the one of interest.
@ In this case, the ADMM can be written as
Xk = arg mXin f(x) + 5| Ax — zk—1 — dk—1l3
2 = argmin h(z) + §||Axk — z — di1 3
di = dk—1 — (Axk — 2x)
the so-called “scaled version” (Boyd et al., 2011).
o Updating z is a proximity computation: zx = prox, , (Axk—1 — dk—1)

o Updating x, may be hard: if f is quadratic, involves matrix inversion;

if £ is not quadratic, may be as hard as the original problem.
M. Figueiredo and S. Wright
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ADMM: Convergence

o Consider the problem min f(x) + h(Ax), where f and h are lower

semi-continuous, proper, convex functions and A has full column rank.
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ADMM: Convergence

o Consider the problem min f(x) + h(Ax), where f and h are lower

semi-continuous, proper, convex functions and A has full column rank.

@ The ADMM algorithm presented in the previous slide converges (for
any p > 0) to a solution x*, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).
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ADMM: Convergence

o Consider the problem min f(x) + h(Ax), where f and h are lower

semi-continuous, proper, convex functions and A has full column rank.

@ The ADMM algorithm presented in the previous slide converges (for
any p > 0) to a solution x*, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

@ As in IST/FBS/PGA, convergence is still guaranteed with inexactly
solved subproblems, as long as the errors are absolutely summable.
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ADMM: Convergence

o Consider the problem min f(x) + h(Ax), where f and h are lower

semi-continuous, proper, convex functions and A has full column rank.

@ The ADMM algorithm presented in the previous slide converges (for
any p > 0) to a solution x*, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

@ As in IST/FBS/PGA, convergence is still guaranteed with inexactly
solved subproblems, as long as the errors are absolutely summable.

@ The recent explosion of interest in ADMM is quite clear in the
citation record of the paper by Eckstein and Bertsekas (1992).

-
994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
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ADMM for a More General Problem

J
o Consider the problem min Zgj(HU)x), where HU) ¢ RPI*",
x€eR" |
and g1, ..., gy are |.s.c proper convex fuctions.

e Map it into min f(x) + h(Ax) as follows (with p = pl+---+ py):

o f(x)=0
HD)
o A= | 1 | e RPN,
H)
Z(1) y
o h:RPTHPI SR p : = Zgj(z(i))
z(J) Jj=1

o We'll see next that this leads to a very convenient version of ADMM.
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ADMM for a More General Problem (Cont.)

Resulting instance of

Xk = arg mXin | Ax—zk_1—dk_1||3
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ADMM for a More General Problem (Cont.)

Resulting instance of

J _ J ] ]
i = arg min | Ax— 21— d 3= (Y (HO)THO) (S (HNTED, + )

=1 j=t

M. Figueiredo and S. Wright Augmented Lagrangian Methods April 2016 14 /27



ADMM for a More General Problem (Cont.)

Resulting instance of

J -1, , ,
X = argmin | Ax—ze1 —dea = (3 (HO)THO) (3 (HO)T (@), + 0l)))
Jj=1 j=1

7 = argmingy + §lu — HOx 1 + g2 B

Z2 = arg min g, + §lu — HDxj_1 + d |13
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ADMM for a More General Problem (Cont.)

Resulting instance of

J _ J ] ]
i = arg min | Ax— 21— d 3= (Y (HO)THO) (S (HNTED, + )

=1 j=t

zlgl) =arg muin g1+ 5lu— H®x_q + d£1_’1||% = PVOXgl/p(H(l)Xk—1 - d,El_)l)

2 = argming; + §lu— Hxi1 + o, 3 = prox

gj/p(H(J)Xk—l - dlgi)l)
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ADMM for a More General Problem (Cont.)

Resulting instance of

J -1, , ,
X = argmin | Ax—ze1 —dea = (3 (HO)THO) (3 (HO)T (@), + 0l)))
Jj=1 j=1

zlgl) =arg muin g1+ 5lu— H®x_q + d£1_’1||% = PVOXgl/p(H(l)Xk—1 - d,El_)l)

Zl((J) = arg muin g+ ‘éllu - H(J)Xk—l + d;(i)1||§ = PVOXgJ/p(H(J)Xk—l — d,EJ,)l)

dk = dk—l — AXk + zk
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ADMM for a More General Problem (Cont.)

Resulting instance of

J _ J ] ]
i = arg min | Ax— 21— d 3= (Y (HO)THO) (S (HNTED, + )

=1 j=t

2V = argmin gy + §llu — HOxe_1 + dfY; |3 = prox,, , (HOx 1 — df,)

Zl(<J) = arg muin g+ ’éllu - H(J)Xk—l + d;(i)1||§ = PVOXgJ/p(H(J)Xk—l — d,EJ,)l)

dk = dk—l — AXk + zk

Key features: matrices are handled separately from the prox operators; the
prox operators are decoupled (can be computed in parallel); requires a
matrix inversion (can be a curse or a blessing).

(Afonso et al., 2010; Setzer et al., 2010; Combettes and Pesquet, 2011)
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Example: Image Restoration using SALSA

AN . 1
Problem: X € argmin §||Ax —yl|3+ 7 [|Px]1
X

J
Template: min Zgj(H(j)z)

1
Mapping: .J = 2. g1(2) = 5|z — yl3,  92(z) =7 |zl

HD = A, H? = P,

Convergence conditions: g1 and g2 are closed, proper, and convex.

G = { ‘/; } has full column rank.

Resulting algorithm: SALSA
(split augmented Lagrangian shrinkage algorithm) [Afonso, Bioucas-Dias, F, 2009, 2010]
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Example: Image Restoration using SALSA

Key steps of SALSA:
Moreau proximity operator of agi (Z) = 5 ||z — y”%’

1 , 1 )
proxg, s, (1) = argmin ﬂllZ —ylz+glz—ulz=
Moreau proximity operator of gg(Z) = 7'||Z||1,

prox,, ,,(u) = soft <u,7’/,u>
Matrix inversion:

Zgt1 = [A*A+P*P}_1<A ( (1) +d(1)> +P*( (2) +d}(€2)>>

...next slide!
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Example: Image Restoration using SALSA

~ .1
Problem: X € arg min §||Ax —ylZ+ 7 ||x|1
X
v observation matrix

Template: min Zgj (H(j)z) A =BW

Jj=1 synthesis matrix

1
Mapping: J =2, gi(z) = §||Z—Y||ga 92(z) = 7 ||z|)s

HY — A =BW H® =1,

Convergence conditions: (1 and g2 are closed, proper, and convex.

G = [ BIVV } has full column rank.
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Example: Image Restoration using SALSA

J -1 -1
Frame-based analysis: [Z H(J ] = [W*B*BW + I]
=1

DFT
v

Periodic deconvolution: B = U*DU diagonal matrix

1 -1
O(nlogn) [(WBBW+1] —1- W*U*W

matrix inversion lemma + WW?* = 1

v subsampling matrix: MIM™* = I
Compressive imaging (MRl): B = MU
O(nlogn) [w*U*M*MUW + I] ~1- W' U'M'MUW
y— subsampling matrix: SS* =
Inpainting (recovery of lost pixels): B = S
g [W*s"sW +1] —1- SW'S'SW
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Example: Image Restoration using SAL

blurred restored

9x9 uniform blur,

40dB BSNR
undecimated Haar frame, (; regularization. TV regularization

~==FISTA ===FISTA
' SpaRSA SpaRSA

..... TWIST == TwIST

—SALSA —SALSA

10° -
10" 10° 10! 10° 10° 10!

seconds seconds
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Example: Image Restoration

Image inpainting
(50% missing)

Alg. Calls to B,B# | Iter. | CPU time | MSE | ISNR

(sec.) MSE | (dB)
FISTA 1022 340 263.8 92.01 | 18.96
TwIST 271 124 127 100.92 | 18.54
SALSA 84 28 20.88 77.61 | 19.68

seconds
Conjecture: SALSA is fast because it's blessed by the matrix inversion
The inverted matrix (e.g., A* A + I)is (almost) the Hessian of the data term;

...second-order (curvature) information (as Newton’s method)
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ADMM for the Morozov Formulation

1
Unconstrained optimization formulation: ~ min 5 ||AX — yH% + TC(X)
X

Constrained optimization (Morozov) formulation: min C(X)
X
basis pursuit denoising, if ¢(x) = ||x||;

[Chen, Donoho, Saunders, 1998]

st. |[Ax—yl3 <¢

Both analysis and synthesis can be used:

* frame-based analysis, C(X) = ||PX||1
* frame-based synthesis c(x) = ||x]|1
A=BW
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ADMM for the Morozov Formulation

Constrained problem:  min ¢(x)
X

st. |[Ax—yl2<e

...can be written as In}in C(X) + LB (e,y) (A X)

Ble,y) = {x eR" : [[x—y[2 <¢}

J
. which has the form - min » ~ g;(HWu)  (P1)
Jj=1

ucRd 4
with J =2, g¢1(z) = ¢(2), HD —1 I
6|4
gQ(Z) = lE(e)y) (Z)7 H(Q) =A

full column rank

Resulting algorithm: C-SALSA (constrained-SALSA)
[Afonso, Bioucas-Dias, F, 2010,2011]
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ADMM for the Morozov Formulation

Moreau proximity operator of LB(E,‘,y) is simply a projection on an {5 ball:

. 1 )
prox,, ., (1) = argmin (3 + 5llz — ull3

_{u < Ju-yl2<e

Tl RSE € lu-yl>e

As SALSA, also C-SALSA involves inversion of the form
—1 1
[W*B*BW + I] or [B*B + P*P}
...all the same tricks as above.
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ADMM for the Morozov Formulation

Image deconvolution benchmark problems:

Experiment | blur kernel o2
[l 9 % 9 uniform 0.562
2A Gaussian 2 R
2B Gaussian 8 NESTA: [Becker, Bobin, Candés, 2011]
3A hij =1/(1+i% +42) | 2
3B hip =1/ ++5°) | 8 SPGL1: [van den Berg, Friedlander, 2009]

Frame-synthesis

Expt. Avg. calls to B, BH (min/max) Iterations CPU time (seconds)
SPGL1 NESTA C-SALSA SPGLI | NESTA | C-SALSA | SPGLI [ NESTA [ C

I 1029 (659/1290) | 3520 (3501/3541) | 398 (388/406) 340 880 134 441.16 590.79 100.72]
2A 511 (279/663) 4897 (4777/4981) | 451 (442/460) 160 1224 136 202.67 798.81 98.85
2B 377 (141/532) 3397 (3345/3473) | 362 (355/370) 98 849 109 120.50 || | 557.02 81.69
3A 675 (378/772) 2622 (2589/2661) | 172 (166/175) 235 656 58 266.41 423.41 42.56
3B 404 (300/475) 2446 (2401/2485) | 134 (130/136) 147 551 41 161.17 354.59 29.57

Expt. Avg. calls to B, B (min/max) Iterations CPU time (seconds)

. NESTA C-SALSA NESTA | C-SALSA | NESTA

Frame-anaIySIs T 2881 (2861/2889) | 413 (404/419) 720 38 353.88 | |

2A 2451 (2377/2505) | 362 (344/371) 613 109 291.14

2B 2139 (2065/2197) | 290 (278/299) 535 87 254.94

3A 2203 (2181/2217) | 137 (134/143) 551 42 261.89

3B 1967 (1949/1985) | 116 (113/119) 492 39 236.45

. Expt. Avg. calls to B, B (min/max) Iterations CPU time (seconds)

Total-variation NESTA CSALSA | NESTA | C-SALSA | NESTA | C-SALSA

1 7783 (7767/7795) | 695 (680/710) 1945 232 3198 [ | B

2A 7323 (7291/7351) | 559 (536/578) 1830 150 279.36

2B 6828 (6775/6883) | 299 (269/329) 1707 100 265.35 2547

3A 6594 (6513/6661) 176 (98/209) 1649 59 250.37 15.08

3B 5514 (5417/5585) | 108 (104/110) 1379 37 210.94 9.23
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