Convex Optimization in Machine Learning and Inverse Problems Part 3: Augmented Lagrangian Methods

Mário A. T. Figueiredo¹ and Stephen J. Wright²

¹Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal

> ²Computer Sciences Department, University of Wisconsin, Madison, WI, USA

Condensed version of ICCOPT tutorial, Lisbon, Portugal, 2013

Augmented Lagrangian Methods

• Consider a linearly constrained problem,

min f(x) s.t. Ax = b.

where f is a proper, lower semi-continuous, convex function.

• The augmented Lagrangian is (with $\rho > 0$)

$$\mathcal{L}(x,\lambda;\rho) := \underbrace{f(x) + \lambda^{T}(Ax - b)}_{\text{Lagrangian}} + \underbrace{\frac{\rho}{2} \|Ax - b\|_{2}^{2}}_{\text{"augmentation"}}$$

Augmented Lagrangian Methods

• Consider a linearly constrained problem,

min f(x) s.t. Ax = b.

where f is a proper, lower semi-continuous, convex function.

• The augmented Lagrangian is (with $\rho > 0$)

$$\mathcal{L}(x,\lambda;\rho) := \underbrace{f(x) + \lambda^{T}(Ax - b)}_{\text{Lagrangian}} + \underbrace{\frac{\rho}{2} \|Ax - b\|_{2}^{2}}_{\text{"augmentation"}}$$

• Basic augmented Lagrangian (a.k.a. method of multipliers) is

$$x_{k} = \arg\min_{x} \mathcal{L}(x, \lambda_{k-1}; \rho);$$

$$\lambda_{k} = \lambda_{k-1} + \rho(Ax_{k} - b);$$

(Hestenes, 1969; Powell, 1969)

A Favorite Derivation

...more or less rigorous for convex f.

• Write the problem as

$$\min_{x} \max_{\lambda} f(x) + \lambda^{T} (Ax - b).$$

Obviously, the max w.r.t. λ will be $+\infty$, unless Ax = b, so this is equivalent to the original problem.

A Favorite Derivation

...more or less rigorous for convex f.

• Write the problem as

$$\min_{x} \max_{\lambda} f(x) + \lambda^{T} (Ax - b).$$

Obviously, the max w.r.t. λ will be $+\infty$, unless Ax = b, so this is equivalent to the original problem.

This equivalence is not very useful, computationally: the max_λ function is highly nonsmooth w.r.t. x. Smooth it by adding a "proximal point" term, penalizing deviations from a prior estimate λ

$$\min_{x} \left\{ \max_{\lambda} f(x) + \lambda^{T} (Ax - b) - \frac{1}{2\rho} \|\lambda - \bar{\lambda}\|^{2} \right\}.$$

A Favorite Derivation

...more or less rigorous for convex f.

• Write the problem as

$$\min_{x} \max_{\lambda} f(x) + \lambda^{T} (Ax - b).$$

Obviously, the max w.r.t. λ will be $+\infty$, unless Ax = b, so this is equivalent to the original problem.

This equivalence is not very useful, computationally: the max_λ function is highly nonsmooth w.r.t. x. Smooth it by adding a "proximal point" term, penalizing deviations from a prior estimate λ

$$\min_{x} \left\{ \max_{\lambda} f(x) + \lambda^{T} (Ax - b) - \frac{1}{2\rho} \|\lambda - \bar{\lambda}\|^{2} \right\}.$$

• Maximization w.r.t. λ is now trivial (a concave quadratic), yielding

$$\lambda = \bar{\lambda} + \rho(Ax - b).$$

A Favorite Derivation (Cont.)

• Inserting
$$\lambda = \overline{\lambda} + \rho(Ax - b)$$
 leads to

$$\min_{x} f(x) + \overline{\lambda}^{T} (Ax - b) + \frac{\rho}{2} \|Ax - b\|^{2} = \mathcal{L}(x, \overline{\lambda}; \rho).$$

A Favorite Derivation (Cont.)

• Inserting
$$\lambda = ar{\lambda} +
ho(Ax - b)$$
 leads to

$$\min_{x} f(x) + \overline{\lambda}^{T} (Ax - b) + \frac{\rho}{2} \|Ax - b\|^{2} = \mathcal{L}(x, \overline{\lambda}; \rho).$$

• Hence can view the augmented Lagrangian process as:

• $\min_{x} \mathcal{L}(x, \bar{\lambda}; \rho)$ to get new x;

• Shift the "prior" on λ by updating to the latest max: $\overline{\lambda} + \rho(Ax - b)$.

repeat until convergence.

A Favorite Derivation (Cont.)

• Inserting
$$\lambda = ar{\lambda} +
ho(Ax - b)$$
 leads to

$$\min_{x} f(x) + \overline{\lambda}^{T} (Ax - b) + \frac{\rho}{2} \|Ax - b\|^{2} = \mathcal{L}(x, \overline{\lambda}; \rho).$$

• Hence can view the augmented Lagrangian process as:

• $\min_x \mathcal{L}(x, \bar{\lambda}; \rho)$ to get new x;

- Shift the "prior" on λ by updating to the latest max: $\overline{\lambda} + \rho(Ax b)$.
- repeat until convergence.
- Add subscripts, and we recover the augmented Lagrangian algorithm of the first slide!
- Can also increase ρ (to sharpen the effect of the prox term), if needed.

Inequality Constraints, Nonlinear Constraints

• The same derivation can be used for inequality constraints:

min f(x) s.t. $Ax \ge b$.

• Apply the same reasoning to the constrained min-max formulation:

$$\min_{x} \max_{\lambda \geq 0} f(x) - \lambda^{T} (Ax - b).$$

Inequality Constraints, Nonlinear Constraints

• The same derivation can be used for inequality constraints:

min f(x) s.t. $Ax \ge b$.

• Apply the same reasoning to the constrained min-max formulation:

$$\min_{x} \max_{\lambda \ge 0} f(x) - \lambda^{T} (Ax - b).$$

• After the prox-term is added, can find the minimizing λ in closed form (as for prox-operators). Leads to update formula:

$$\max\left(ar{\lambda}+
ho(Ax-b),0
ight).$$

• This derivation extends immediately to nonlinear constraints c(x) = 0 or $c(x) \ge 0$.

"Explicit" Constraints, Inequality Constraints

- There may be other constraints on x (such as x ∈ Ω) that we prefer to handle explicitly in the subproblem.
- For the formulation $\min_{x} f(x)$, s.t. Ax = b, $x \in \Omega$, the min_x step can enforce $x \in \Omega$ explicitly:

$$egin{aligned} & x_k = rg\min_{x\in\Omega} \mathcal{L}(x,\lambda_{k-1};
ho); \ & \lambda_k = \lambda_{k-1} +
ho(Ax_k - b); \end{aligned}$$

"Explicit" Constraints, Inequality Constraints

- There may be other constraints on x (such as x ∈ Ω) that we prefer to handle explicitly in the subproblem.
- For the formulation $\min_{x} f(x)$, s.t. Ax = b, $x \in \Omega$, the min_x step can enforce $x \in \Omega$ explicitly:

$$\begin{aligned} x_k &= \arg\min_{x\in\Omega} \mathcal{L}(x,\lambda_{k-1};\rho);\\ \lambda_k &= \lambda_{k-1} + \rho(Ax_k - b); \end{aligned}$$

• This gives an alternative way to handle inequality constraints: introduce slacks *s*, and enforce them explicitly. That is, replace

$$\min_{x} f(x) \text{ s.t. } c(x) \ge 0,$$

by

"Explicit" Constraints, Inequality Constraints (Cont.)

• The augmented Lagrangian is now

$$\mathcal{L}(x,s,\lambda;\rho) := f(x) + \lambda^{\mathsf{T}}(c(x)-s) + \frac{\rho}{2} \|c(x)-s\|_2^2.$$

• Enforce $s \ge 0$ explicitly in the subproblem:

$$egin{aligned} &(x_k,s_k) = rg\min_{x,s}\mathcal{L}(x,s,\lambda_{k-1};
ho), & ext{s.t.} \ s \geq 0;\ &\lambda_k = \lambda_{k-1} +
ho(c(x_k) - s_k) \end{aligned}$$

"Explicit" Constraints, Inequality Constraints (Cont.)

• The augmented Lagrangian is now

$$\mathcal{L}(x,s,\lambda;\rho) := f(x) + \lambda^{\mathsf{T}}(c(x)-s) + \frac{\rho}{2} \|c(x)-s\|_2^2.$$

• Enforce $s \ge 0$ explicitly in the subproblem:

$$egin{aligned} &(x_k,s_k) = rg\min_{x,s}\mathcal{L}(x,s,\lambda_{k-1};
ho), & ext{s.t.} \;\; s \geq 0; \ &\lambda_k = \lambda_{k-1} +
ho(c(x_k) - s_k) \end{aligned}$$

There are good algorithmic options for dealing with bound constraints s ≥ 0 (gradient projection and its enhancements). This is used in the Lancelot code (Conn et al., 1992).

Quick History of Augmented Lagrangian

- Dates from at least 1969: Hestenes, Powell.
- Developments in 1970s, early 1980s by Rockafellar, Bertsekas, and others.
- Lancelot code for nonlinear programming: Conn, Gould, Toint, around 1992 (Conn et al., 1992).
- Lost favor somewhat as an approach for general nonlinear programming during the next 15 years.
- Recent revival in the context of sparse optimization and its many applications, in conjunction with splitting / coordinate descent.

Alternating Direction Method of Multipliers (ADMM)

• Consider now problems with a separable objective of the form

$$\min_{(x,z)} f(x) + h(z) \quad \text{s.t.} \quad Ax + Bz = c,$$

for which the augmented Lagrangian is

$$\mathcal{L}(x,z,\lambda;\rho) := f(x) + h(z) + \lambda^{T}(Ax + Bz - c) + \frac{\rho}{2} \|Ax - Bz - c\|_{2}^{2}.$$

Alternating Direction Method of Multipliers (ADMM)

• Consider now problems with a separable objective of the form

$$\min_{(x,z)} f(x) + h(z) \quad \text{s.t.} \quad Ax + Bz = c,$$

for which the augmented Lagrangian is

$$\mathcal{L}(x,z,\lambda;\rho) := f(x) + h(z) + \lambda^{T}(Ax + Bz - c) + \frac{\rho}{2} \|Ax - Bz - c\|_{2}^{2}.$$

Standard AL would minimize L(x, z, λ; ρ) w.r.t. (x, z) jointly.
 However, these are coupled in the quadratic term, separability is lost

Alternating Direction Method of Multipliers (ADMM)

• Consider now problems with a separable objective of the form

$$\min_{(x,z)} f(x) + h(z) \quad \text{s.t.} \quad Ax + Bz = c,$$

for which the augmented Lagrangian is

$$\mathcal{L}(x,z,\lambda;\rho) := f(x) + h(z) + \lambda^{T}(Ax + Bz - c) + \frac{\rho}{2} \|Ax - Bz - c\|_{2}^{2}.$$

- Standard AL would minimize L(x, z, λ; ρ) w.r.t. (x, z) jointly.
 However, these are coupled in the quadratic term, separability is lost
- In ADMM, minimize over x and z separately and sequentially:

$$\begin{aligned} x_k &= \arg\min_{x} \mathcal{L}(x, z_{k-1}, \lambda_{k-1}; \rho); \\ z_k &= \arg\min_{z} \mathcal{L}(x_k, z, \lambda_{k-1}; \rho); \\ \lambda_k &= \lambda_{k-1} + \rho(Ax_k + Bz_k - c). \end{aligned}$$

Main features of ADMM:

- Does one cycle of block-coordinate descent in (x, z).
- The minimizations over x and z add only a quadratic term to f and h, respectively. Usually does not alter the cost much.
- Can perform the (x, z) minimizations inexactly.
- Can add explicit (separated) constraints: $x \in \Omega_x$, $z \in \Omega_z$.
- Many (many!) recent applications to compressed sensing, image processing, matrix completion, sparse principal components analysis....

ADMM has a rich collection of antecendents, dating even to the 1950s (operator splitting).

For an comprehensive recent survey, including a diverse collection of machine learning applications, see Boyd et al. (2011).

ADMM: A Simpler Form

• Often, a simpler version is enough: $\min_{(x,z)} f(x) + h(z)$ s.t. Ax = z, equivalent to $\min_{x} f(x) + h(Ax)$, often the one of interest.

ADMM: A Simpler Form

- Often, a simpler version is enough: $\min_{(x,z)} f(x) + h(z)$ s.t. Ax = z, equivalent to $\min_{x} f(x) + h(Ax)$, often the one of interest.
- In this case, the ADMM can be written as

$$x_{k} = \arg\min_{x} f(x) + \frac{\rho}{2} ||Ax - z_{k-1} - d_{k-1}||_{2}^{2}$$
$$z_{k} = \arg\min_{z} h(z) + \frac{\rho}{2} ||Ax_{k} - z - d_{k-1}||_{2}^{2}$$
$$d_{k} = d_{k-1} - (Ax_{k} - z_{k})$$

the so-called "scaled version" (Boyd et al., 2011).

ADMM: A Simpler Form

- Often, a simpler version is enough: $\min_{(x,z)} f(x) + h(z)$ s.t. Ax = z, equivalent to $\min_{x} f(x) + h(Ax)$, often the one of interest.
- In this case, the ADMM can be written as

$$x_{k} = \arg\min_{x} f(x) + \frac{\rho}{2} ||Ax - z_{k-1} - d_{k-1}||_{2}^{2}$$
$$z_{k} = \arg\min_{z} h(z) + \frac{\rho}{2} ||Ax_{k} - z - d_{k-1}||_{2}^{2}$$
$$d_{k} = d_{k-1} - (Ax_{k} - z_{k})$$

the so-called "scaled version" (Boyd et al., 2011).

• Updating z_k is a proximity computation: $z_k = \text{prox}_{h/\rho} (A x_{k-1} - d_{k-1})$

- Often, a simpler version is enough: $\min_{(x,z)} f(x) + h(z)$ s.t. Ax = z, equivalent to $\min_{x} f(x) + h(Ax)$, often the one of interest.
- In this case, the ADMM can be written as

$$x_{k} = \arg\min_{x} f(x) + \frac{\rho}{2} ||Ax - z_{k-1} - d_{k-1}||_{2}^{2}$$
$$z_{k} = \arg\min_{z} h(z) + \frac{\rho}{2} ||Ax_{k} - z - d_{k-1}||_{2}^{2}$$
$$d_{k} = d_{k-1} - (Ax_{k} - z_{k})$$

the so-called "scaled version" (Boyd et al., 2011).

- Updating z_k is a proximity computation: $z_k = \text{prox}_{h/\rho} (A x_{k-1} d_{k-1})$
- Updating x_k may be hard: if f is quadratic, involves matrix inversion; if f is not quadratic, may be as hard as the original problem.

• Consider the problem $\min_{x} f(x) + h(Ax)$, where f and h are lower semi-continuous, proper, convex functions and A has full column rank.

- Consider the problem $\min_{x} f(x) + h(Ax)$, where f and h are lower semi-continuous, proper, convex functions and A has full column rank.
- The ADMM algorithm presented in the previous slide converges (for any ρ > 0) to a solution x^{*}, if one exists, otherwise it diverges.
 - This is a cornerstone result by Eckstein and Bertsekas (1992).

- Consider the problem $\min_{x} f(x) + h(Ax)$, where f and h are lower semi-continuous, proper, convex functions and A has full column rank.
- The ADMM algorithm presented in the previous slide converges (for any ρ > 0) to a solution x*, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

• As in IST/FBS/PGA, convergence is still guaranteed with inexactly solved subproblems, as long as the errors are absolutely summable.

- Consider the problem $\min_{x} f(x) + h(Ax)$, where f and h are lower semi-continuous, proper, convex functions and A has full column rank.
- The ADMM algorithm presented in the previous slide converges (for any ρ > 0) to a solution x*, if one exists, otherwise it diverges.
 This is a cornerstone result by Eckstein and Bertsekas (1992).
- As in IST/FBS/PGA, convergence is still guaranteed with inexactly solved subproblems, as long as the errors are absolutely summable.
- The recent explosion of interest in ADMM is quite clear in the citation record of the paper by Eckstein and Bertsekas (1992).

ADMM for a More General Problem

- Consider the problem $\min_{x \in \mathbb{R}^n} \sum_{i=1}^{J} g_j(H^{(j)}x)$, where $H^{(j)} \in \mathbb{R}^{p_j \times n}$, and $g_1, ..., g_J$ are l.s.c proper convex fuctions.
- Map it into $\min_{x} f(x) + h(Ax)$ as follows (with $p = p1 + \dots + p_J$):

$$\circ f(x) = 0 \circ A = \begin{bmatrix} H^{(1)} \\ \vdots \\ H^{(J)} \end{bmatrix} \in \mathbb{R}^{p \times n}, \circ h : \mathbb{R}^{p_1 + \dots + p_J} \to \overline{\mathbb{R}}, \quad h\left(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(J)} \end{bmatrix} \right) = \sum_{j=1}^{J} g_j(z^{(j)})$$

We'll see next that this leads to a very convenient version of ADMM.

$$x_k = \arg\min_{x} ||Ax - z_{k-1} - d_{k-1}||_2^2$$

$$x_{k} = \arg\min_{x} \|Ax - z_{k-1} - d_{k-1}\|_{2}^{2} = \left(\sum_{j=1}^{J} (H^{(j)})^{T} H^{(j)}\right)^{-1} \left(\sum_{j=1}^{J} (H^{(j)})^{T} (z_{k-1}^{(j)} + d_{k-1}^{(j)})\right)^{-1} \left(\sum_{j=1$$

$$\begin{aligned} x_{k} &= \arg\min_{x} \|Ax - z_{k-1} - d_{k-1}\|_{2}^{2} = \left(\sum_{j=1}^{J} (H^{(j)})^{T} H^{(j)}\right)^{-1} \left(\sum_{j=1}^{J} (H^{(j)})^{T} (z_{k-1}^{(j)} + d_{k-1}^{(j)})\right) \\ z_{k}^{(1)} &= \arg\min_{u} g_{1} + \frac{\rho}{2} \|u - H^{(1)} x_{k-1} + d_{k-1}^{(1)}\|_{2}^{2} \\ &\vdots &\vdots \\ z_{k}^{(J)} &= \arg\min_{u} g_{J} + \frac{\rho}{2} \|u - H^{(J)} x_{k-1} + d_{k-1}^{(J)}\|_{2}^{2} \end{aligned}$$

$$\begin{aligned} x_{k} &= \arg\min_{x} \|Ax - z_{k-1} - d_{k-1}\|_{2}^{2} = \left(\sum_{j=1}^{J} (H^{(j)})^{T} H^{(j)}\right)^{-1} \left(\sum_{j=1}^{J} (H^{(j)})^{T} (z_{k-1}^{(j)} + d_{k-1}^{(j)})\right) \\ z_{k}^{(1)} &= \arg\min_{u} g_{1} + \frac{\rho}{2} \|u - H^{(1)} x_{k-1} + d_{k-1}^{(1)}\|_{2}^{2} = \operatorname{prox}_{g_{1}/\rho} (H^{(1)} x_{k-1} - d_{k-1}^{(1)}) \\ \vdots &\vdots \\ z_{k}^{(J)} &= \arg\min_{u} g_{J} + \frac{\rho}{2} \|u - H^{(J)} x_{k-1} + d_{k-1}^{(J)}\|_{2}^{2} = \operatorname{prox}_{g_{J}/\rho} (H^{(J)} x_{k-1} - d_{k-1}^{(J)}) \end{aligned}$$

$$x_{k} = \arg\min_{x} \|Ax - z_{k-1} - d_{k-1}\|_{2}^{2} = \left(\sum_{j=1}^{J} (H^{(j)})^{T} H^{(j)}\right)^{-1} \left(\sum_{j=1}^{J} (H^{(j)})^{T} (z_{k-1}^{(j)} + d_{k-1}^{(j)})\right)$$

$$z_{k}^{(1)} = \arg\min_{u} g_{1} + \frac{\rho}{2} \|u - H^{(1)}x_{k-1} + d_{k-1}^{(1)}\|_{2}^{2} = \operatorname{prox}_{g_{1}/\rho} (H^{(1)}x_{k-1} - d_{k-1}^{(1)})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$z_{k}^{(J)} = \arg\min_{u} g_{J} + \frac{\rho}{2} \|u - H^{(J)}x_{k-1} + d_{k-1}^{(J)}\|_{2}^{2} = \operatorname{prox}_{g_{J}/\rho} (H^{(J)}x_{k-1} - d_{k-1}^{(J)})$$

$$d_{k} = d_{k-1} - Ax_{k} + z_{k}$$

Resulting instance of

$$\begin{aligned} x_{k} &= \arg\min_{x} \|Ax - z_{k-1} - d_{k-1}\|_{2}^{2} = \left(\sum_{j=1}^{J} (H^{(j)})^{T} H^{(j)}\right)^{-1} \left(\sum_{j=1}^{J} (H^{(j)})^{T} (z_{k-1}^{(j)} + d_{k-1}^{(j)})\right) \\ z_{k}^{(1)} &= \arg\min_{u} g_{1} + \frac{\rho}{2} \|u - H^{(1)} x_{k-1} + d_{k-1}^{(1)}\|_{2}^{2} = \operatorname{prox}_{g_{1}/\rho} (H^{(1)} x_{k-1} - d_{k-1}^{(1)}) \\ \vdots & \vdots & \vdots \\ z_{k}^{(J)} &= \arg\min_{u} g_{J} + \frac{\rho}{2} \|u - H^{(J)} x_{k-1} + d_{k-1}^{(J)}\|_{2}^{2} = \operatorname{prox}_{g_{J}/\rho} (H^{(J)} x_{k-1} - d_{k-1}^{(J)}) \\ d_{k} &= d_{k-1} - Ax_{k} + z_{k} \end{aligned}$$

Key features: matrices are handled separately from the prox operators; the prox operators are decoupled (can be computed in parallel); requires a matrix inversion (can be a curse or a blessing).

(Afonso et al., 2010; Setzer et al., 2010; Combettes and Pesquet, 2011)

Problem:
$$\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \tau \|\mathbf{P}\mathbf{x}\|_{1}$$

Template: $\min_{\mathbf{z} \in \mathbb{R}^{d}} \sum_{j=1}^{J} g_{j}(\mathbf{H}^{(j)}\mathbf{z})$
Mapping: $J = 2$, $g_{1}(\mathbf{z}) = \frac{1}{2} \|\mathbf{z} - \mathbf{y}\|_{2}^{2}$, $g_{2}(\mathbf{z}) = \tau \|\mathbf{z}\|_{1}$
 $\mathbf{H}^{(1)} = \mathbf{A}$, $\mathbf{H}^{(2)} = \mathbf{P}$,

Convergence conditions: g_1 and g_2 are closed, proper, and convex.

$$\mathbf{G} = \left[egin{array}{c} \mathbf{A} \ \mathbf{P} \end{array}
ight]$$
 has full column rank.

Resulting algorithm: SALSA

(split augmented Lagrangian shrinkage algorithm) [Afonso, Bioucas-Dias, F, 2009, 2010]

M. Figueiredo and S. Wright

Key steps of SALSA:

Moreau proximity operator of
$$g_1(\mathbf{z}) = rac{1}{2} \|\mathbf{z}-\mathbf{y}\|_2^2,$$

$$\operatorname{prox}_{g_1/\mu}(\mathbf{u}) = \arg\min_{\mathbf{z}} \frac{1}{2\mu} \|\mathbf{z} - \mathbf{y}\|_2^2 + \frac{1}{2} \|\mathbf{z} - \mathbf{u}\|_2^2 = \frac{\mathbf{y} + \mu \,\mathbf{u}}{1 + \mu}$$

Moreau proximity operator of $g_2(\mathbf{z}) = \tau \|\mathbf{z}\|_1$,

$$\operatorname{prox}_{g_2/\mu}(\mathbf{u}) = \operatorname{soft}(\mathbf{u}, \tau/\mu)$$

Matrix inversion:

$$\mathbf{z}_{k+1} = \left[\mathbf{A}^*\mathbf{A} + \mathbf{P}^*\mathbf{P}\right]^{-1} \left(\mathbf{A}^*\left(\mathbf{u}_k^{(1)} + \mathbf{d}_k^{(1)}\right) + \mathbf{P}^*\left(\mathbf{u}_k^{(2)} + \mathbf{d}_k^{(2)}\right)\right)$$

...next slide!

Problem:
$$\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \tau \|\mathbf{x}\|_{1}$$

Template: $\min_{\mathbf{z} \in \mathbb{R}^{d}} \sum_{j=1}^{J} g_{j}(\mathbf{H}^{(j)}\mathbf{z})$ $\mathbf{A} = \mathbf{B}\mathbf{W}$ observation matrix
Mapping: $J = 2$, $g_{1}(\mathbf{z}) = \frac{1}{2} \|\mathbf{z} - \mathbf{y}\|_{2}^{2}$, $g_{2}(\mathbf{z}) = \tau \|\mathbf{z}\|_{1}$
 $\mathbf{H}^{(1)} = \mathbf{A} = \mathbf{B}\mathbf{W}$ $\mathbf{H}^{(2)} = \mathbf{I}$,

Convergence conditions: g_1 and g_2 are closed, proper, and convex.

$$\mathbf{G} = \left[egin{array}{c} \mathbf{B} \, \mathbf{W} \ I \end{array}
ight] \,$$
 has full column rank.

Frame-based analysis:
$$\left[\sum_{j=1}^{J} (\mathbf{H}^{(j)})^* \mathbf{H}^{(j)}\right]^{-1} = \left[\mathbf{W}^* \mathbf{B}^* \mathbf{B} \mathbf{W} + \mathbf{I}\right]^{-1}$$
Periodic deconvolution: $\mathbf{B} = \mathbf{U}^* \mathbf{D} \mathbf{U}$ diagonal matrix
 $O(n \log n)$ $\left[\mathbf{W}^* \mathbf{B}^* \mathbf{B} \mathbf{W} + \mathbf{I}\right]^{-1} = \mathbf{I} - \mathbf{W}^* \mathbf{U}^* \mathbf{D}^* \left[|\mathbf{D}|^2 + \mathbf{I}\right]^{-1} \mathbf{D} \mathbf{U} \mathbf{W}$
matrix inversion lemma $+ \mathbf{W} \mathbf{W}^* = \mathbf{I}$
Subsampling matrix: $\mathbf{M} \mathbf{M}^* = \mathbf{I}$
Compressive imaging (MRI): $\mathbf{B} = \mathbf{M} \mathbf{U}$
 $O(n \log n)$ $\left[\mathbf{W}^* \mathbf{U}^* \mathbf{M}^* \mathbf{M} \mathbf{U} \mathbf{W} + \mathbf{I}\right]^{-1} = \mathbf{I} - \frac{1}{2} \mathbf{W}^* \mathbf{U}^* \mathbf{M}^* \mathbf{M} \mathbf{U} \mathbf{W}$
Inpainting (recovery of lost pixels): $\mathbf{B} = \mathbf{S}$
 $O(n \log n)$ $\left[\mathbf{W}^* \mathbf{S}^* \mathbf{S} \mathbf{W} + \mathbf{I}\right]^{-1} = \mathbf{I} - \frac{1}{2} \mathbf{W}^* \mathbf{S}^* \mathbf{S} \mathbf{W}^*$

M. Figueiredo and S. Wright

9x9 uniform blur, 40dB BSNR

undecimated Haar frame, ℓ_1 regularization.

TV regularization

Image inpainting (50% missing)

Alg.	Calls to \mathbf{B}, \mathbf{B}^H	Iter.	CPU time	MSE	ISNR
			(sec.)	MSE	(dB)
FISTA	1022	340	263.8	92.01	18.96
TwIST	271	124	112.7	100.92	18.54
SALSA	84	28	20.88	77.61	19.68

Conjecture: SALSA is fast because it's **blessed** by the matrix inversion The inverted matrix (e.g., $\mathbf{A}^*\mathbf{A} + \mathbf{I}$) is (almost) the Hessian of the data term; ...second-order (curvature) information (as Newton's method)

Augmented Lagrangian Methods

ADMM for the Morozov Formulation

Unconstrained optimization formulation:
$$\min_{\mathbf{x}}rac{1}{2}\|\mathbf{A}\mathbf{x}-\mathbf{y}\|_2^2+ au c(\mathbf{x})$$

Constrained optimization (Morozov) formulation: basis pursuit denoising, if $c(\mathbf{x}) = \|\mathbf{x}\|_1$ [Chen, Donoho, Saunders, 1998]

• frame-based analysis,
$$c(\mathbf{x}) = \|\mathbf{P}\mathbf{x}\|_1$$

frame-based synthesis

$$c(\mathbf{x}) = \|\mathbf{x}\|_1$$
$$\mathbf{A} = \mathbf{B}\mathbf{W}$$

min $c(\mathbf{x})$

s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 \le \varepsilon$

х

ADMM for the Morozov Formulation

Constrained problem:
$$\min_{\mathbf{x}} c(\mathbf{x})$$
s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} \leq \varepsilon$
....can be written as
$$\min_{\mathbf{x}} c(\mathbf{x}) + \iota_{\mathcal{B}(\varepsilon,\mathbf{y})}(\mathbf{A}\mathbf{x})$$
 $\mathcal{B}(\varepsilon,\mathbf{y}) = \{\mathbf{x} \in \mathbb{R}^{n} : \|\mathbf{x} - \mathbf{y}\|_{2} \leq \varepsilon\}$
....which has the form
$$\min_{\mathbf{u} \in \mathbb{R}^{d}} \sum_{j=1}^{J} g_{j}(\mathbf{H}^{(j)}\mathbf{u}) \quad (P1)$$
with $J = 2$, $g_{1}(\mathbf{z}) = c(\mathbf{z})$, $\mathbf{H}^{(1)} = \mathbf{I}$
 $g_{2}(\mathbf{z}) = \iota_{E(\varepsilon,\mathbf{y})}(\mathbf{z})$, $\mathbf{H}^{(2)} = \mathbf{A}$
 $\mathbf{G} = \begin{bmatrix} \mathbf{I} \\ \mathbf{A} \end{bmatrix}$
full column rank

Resulting algorithm: C-SALSA (constrained-SALSA)

[Afonso, Bioucas-Dias, F, 2010,2011]

M. Figueiredo and S. Wright

Augmented Lagrangian Methods

ADMM for the Morozov Formulation

Moreau proximity operator of $\ell_{\mathcal{B}(\varepsilon,\mathbf{y})}$ is simply a projection on an ℓ_2 ball:

$$\begin{aligned} \operatorname{prox}_{\iota_{\mathcal{B}(\varepsilon,\mathbf{y})}}(\mathbf{u}) &= \arg\min_{\mathbf{z}} \iota_{\mathcal{B}(\varepsilon,\mathbf{y})} + \frac{1}{2} \|\mathbf{z} - \mathbf{u}\|_{2}^{2} \\ &= \begin{cases} \mathbf{u} & \Leftarrow & \|\mathbf{u} - \mathbf{y}\|_{2} \le \varepsilon \\ \mathbf{y} + \frac{\varepsilon(\mathbf{u} - \mathbf{y})}{\|\mathbf{u} - \mathbf{y}\|_{2}} & \Leftarrow & \|\mathbf{u} - \mathbf{y}\|_{2} > \varepsilon \end{cases} \end{aligned}$$

As SALSA, also C-SALSA involves inversion of the form

$$\left[\mathbf{W}^*\mathbf{B}^*\mathbf{B}\mathbf{W} + \mathbf{I}\right]^{-1} \quad \text{or} \quad \left[\mathbf{B}^*\mathbf{B} + \mathbf{P}^*\mathbf{P}\right]^{-1}$$

...all the same tricks as above.

Image deconvolution benchmark problems:

Experiment	blur kernel	σ^2
1	9×9 uniform	0.56^{2}
2A	Gaussian	2
2B	Gaussian	8
3A	$h_{ij} = 1/(1+i^2+j^2)$	2
3B	$h_{ij} = 1/(1+i^2+j^2)$	8

NESTA: [Becker, Bobin, Candès, 2011]

SPGL1: [van den Berg, Friedlander, 2009]

Frame-synthesis

Expt.	Avg. calls to \mathbf{B}, \mathbf{B}^H (min/max)			Iterations			CPU time (seconds)			
	SPGL1	NESTA	C-SALSA	SPGL1	NESTA	C-SALSA	SPGL1	NESTA	C-SALSA	
1	1029 (659/1290)	3520 (3501/3541)	398 (388/406)	340	880	134	441.16	590.79	100.72	
2A	511 (279/663)	4897 (4777/4981)	451 (442/460)	160	1224	136	202.67	798.81	98.85	
2B	377 (141/532)	3397 (3345/3473)	362 (355/370)	98	849	109	120.50	557.02	81.69	
3A	675 (378/772)	2622 (2589/2661)	172 (166/175)	235	656	58	266.41	423.41	42.56	
3B	404 (300/475)	2446 (2401/2485)	134 (130/136)	147	551	41	161.17	354.59	29.57	

	Expt.	Avg. calls to \mathbf{B}, \mathbf{B}^H (min/max)		Iterations		CPU time (seconds)	
The second second second		NESTA	C-SALSA	NESTA	C-SALSA	NESTA	C-SALSA
Frame-analysis	1	2881 (2861/2889)	413 (404/419)	720	138	353.88	80.32
	2A	2451 (2377/2505)	362 (344/371)	613	109	291.14	62.65
	2B	2139 (2065/2197)	290 (278/299)	535	87	254.94	50.14
	3A	2203 (2181/2217)	137 (134/143)	551	42	261.89	23.83
	3B	1967 (1949/1985)	116 (113/119)	492	39	236.45	22.38

Total-variation

Expt.	Avg. calls to B, I	Iter	CPU time (seconds)					
	NESTA	C-SALSA	NESTA	C-SALSA	NESTA	(C-SALSA	٩
1	7783 (7767/7795)	695 (680/710)	1945	232	311.98		62.56	
2A	7323 (7291/7351)	559 (536/578)	1830	150	279.36		38.63	
2B	6828 (6775/6883)	299 (269/329)	1707	100	265.35		25.47	
3A	6594 (6513/6661)	176 (98/209)	1649	59	250.37		15.08	
3B	5514 (5417/5585)	108 (104/110)	1379	37	210.94		9.23	

- Afonso, M., Bioucas-Dias, J., and Figueiredo, M. (2010). Fast image recovery using variable splitting and constrained optimization. *IEEE Transactions on Image Processing*, 19:2345–2356.
- Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends in Machine Learning*, 3(1):1–122.
- Combettes, P. and Pesquet, J.-C. (2011). Signal recovery by proximal forward-backward splitting. In *Fixed-Point Algorithms for Inverse Problems in Science and Engineering*, pages 185–212. Springer.
- Conn, A., Gould, N., and Toint, P. (1992). LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A). Springer Verlag, Heidelberg.
- Eckstein, J. and Bertsekas, D. (1992). On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. *Mathematical Programming*, 5:293–318.
- Hestenes, M. (1969). Multiplier and gradient methods. *Journal of Optimization Theory and Applications*, 4:303–320.
- Powell, M. (1969). A method for nonlinear constraints in minimization problems. In Fletcher, R., editor, *Optimization*, pages 283–298. Academic Press, New York.
- Setzer, S., Steidl, G., and Teuber, T. (2010). Deblurring poissonian images by split bregman techniques. *Journal of Visual Communication and Image Representation*, 21:193–199.