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Image denoising: motivating example

• Images are inevitably corrupted by various degradations and
particularly by noise.
• Megapixels race: Pixels are getting smaller, and images even noisier

=_

image noise denoised image

Canon Powershot A590IS  ISO 800
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Imaging Sensors: Exposure-time/noise trade-off

Digital imaging sensors can have very different performance

Different acquisition settings result in different noise levels in the image

“Exposure-time/noise trade-off “
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• Intro
• Signal-dependent noise modeling and removal for digital imaging

sensors
• Local polynomial approximations (LPA-ICI)
• Advanced image processing techniques:

- shape-adaptive methods
- nonlocal transform-based methods

• Applications:
- denoising
- deblurring
- deblocking
- super-resolution/zooming
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Statistical analysis of raw data



Department of Signal Processing

24

8.4.2016

Statistical analysis of raw data
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Statistical analysis of raw data
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Statistical analysis of raw data
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The analysis of experimental data
demonstrates that:

1. The model of noise is close to the
Poissonian one

2. Model parameters depend neither on the
color channel nor on the exposure time

Statistical analysis of raw data
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Parametric signal-dependent noise-modelling:
Poissonian-Gaussian with clipping
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automatic estimation from single-image raw-
data (http://www.cs.tut.fi/~foi/sensornoise.html)
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Practical modeling for raw data: idea

• Model photon-to-electron conversion using Poisson distributions (signal
dependent);
• Model the other noise sources as signal-independent and Gaussian (central-
limit theorem);
• Exploit normal approximation of Poisson distributions;
• The acquisition/dynamic range is limited: too dark or too bright signals are
clipped;
• There can be a pedestal;
• Spatial dependencies can be ignored for normal operating conditions (go for
independent noise).

Eventually, only two parameters are sufficient to describe the noise model
where the raw data is described as clipped signal-dependent observations.
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Variance stabilization
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Inversion for Poisson stabilized by Anscombe
Mäkitalo, Foi (TIP, 2011)
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Experiment: clipped noisy data
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Original  image : y (x1, x2) = 0.7 sin (2π x1/512)+ 0.5
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Experiment: Noise Estimation
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estimation and fitting  a = 0.0038, b = 0.022 st.dev.-function .σ
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Experiment: denoised estimate after variance
stabilization before declipping
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Experiment: declipped estimate
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Experiment: declipped estimate (crosssection)
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Real experiment: (Raw-data from Fujiflm FinePix
S9600, ISO 1600)
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Real experiment: Denoising before declipping
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Real experiment: Denoising after declipping
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Real experiment: Denoising after declipping
(crossection)
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LASIP
www.cs.tut.fi/~lasip/

• Local Approximation Signal and Image  Processing
(LASIP) Project

LASIP project is dedicated to investigations in a wide class of
novel efficient adaptive signal processing techniques.
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LASIP

LPA estimates, bias and variance, and asymptotic MSE



Department of Signal Processing

48

LASIP: Intersection of Confidence Intervals (ICI) rule
Goldenshluger & Nemirovski, 1997
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Anisotropy: motivation
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Anisotropic estimator based on directional
adaptive-scale: idea
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Directional LPA
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LASIP: HOW LPA-ICI WORKS
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Anisotropic LPA-ICI:
Kernels used in practice
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Sliding DCT denoising

K. Egiazarian, J. Astola, M. Helsingius, and P.
Kuosmanen (1999) “Adaptive denoising and
lossy compression of  images in transform
domain”, J. Electronic Imaging
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Shape-adaptive DCT image filtering

By demanding the local fit of a polynomial model, we are able to avoid
the presence of singularities or discontinuities within the transform support. In this
way, we ensure that data are represented sparsely in the transform domain,
significantly improving the effectiveness of shrinkage (e.g., thresholding).

noisy image and noisy data after hard-thresholding
adaptive-shape extracted from in SA-DCT domain
neighborhood the neighborhood
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Shape-adaptation: use directional LPA-ICI
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Shape-adaptive DCT image filtering

Pointwise SA-DCT: anisotropic neighborhoods
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Shape-adaptive DCT image filtering

•Direct generalization of the classical block-DCT (B-DCT);
•On rectangular domains (e.g., squares) the SA-DCT and B-DCT coincide;
•Comparable computational complexity as the separable B-DCT (fast
algorithms);
•SA-DCT is part of the MPEG-4 standard;
•Efficient (low-power) hardware implementations available.

Before our work on SA-DCT filtering, the SA-DCT had been used
only for image and video compression.
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Pointwise SA-DCT: denoising results

A fragment of Cameraman: noisy observation (σ=25, PSNR=20.14dB), BLS-
GSM estimate (Portilla et al.) (PSNR=28.35dB), and the proposed Pointwise
SA-DCT estimate (PSNR=29.11dB).
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Pointwise SA-DCT: deblocking results

JPEG coded Cameraman with 2 different quality levels and the results of
post-filtering using SA-DCT
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Pointwise SA-DCT: deblurring results

Images blurred & noisy are deblurred & denoised by SA-DCT filter.
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Pointwise SA-DCT: extension to color, motivation

Luminance-chrominance decompositions: structural correlation
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Pointwise SA-DCT: structural contraint in
luminance-chrominance space

Use for all three channels the adaptive neighborhoods defined by the anisotropic
LPA-ICI for the luminance channel.
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Pointwise SA-DCT: deblocking results

JPEG-compressed Pointwise SA-DCT deblocking
(Q=10, 0.25bpp, PSNR=26.87dB) (PSNR=28.30dB)
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Pointwise SA-DCT: deblocking results
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Pointwise SA-DCT: denoising results

Fragments of the noisy F-16 (σ=30, PSNR=18.59dB), of ProbShrink-MB
(Pizurica et al.) estimate (PSNR=30.50dB), and of Pointwise SA-DCT
estimate (PSNR=31.59dB).
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Block-Matching and 3D filtering (BM3D)
denoising algorithm

• Generalizes NL-means and overcomplete transform methods
• Current state-of-the-art denoising method

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
denoising with block-matching and 3D filtering”, Proc. SPIE
Electronic Imaging 2006, Image Process.: Algorithms and Systems
V, no. 6064A-30, San Jose (CA), USA, Jan. 2006.

--- , “Image denoising by sparse 3D transform-domain collaborative
filtering”, IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-
2095, Aug. 2007.
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Block-matching and grouping

Groups are characterized by both:
• intra-block correlation between the pixels of each grouped block (natural
images);
• inter -block correlation between the corresponding pixels of different blocks
(grouped block are similar);
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BM3D: Collaborative filtering

• Each grouped block collaborates for the filtering of all others, and vice versa.
• Provides individual estimates for all grouped blocks (not necessarily equal).
• Realized as shrinkage in a 3-D transform domain.
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BM3D with Shape-Adaptive PCA (BM3D-
SAPCA)

Main ingredients:

• Local Polynomial Approximation - Intersection of Confidence Intervals (LPA-
ICI) to adaptively select support for 2-D transform;
• Block-Matching to enable non-locality;
• Shape-Adaptive PCA (SA-PCA);
• Shape-Adaptive DCT low-complexity 2-D transform on arbitrarily-shaped
domains (when SA-PCA is not feasible).

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, .BM3D Image Denoising
with Shape-Adaptive Principal Component Analysis., Proc. Workshop on Signal
Processing with Adaptive Sparse Structured Representations (SPARS.09), Saint-
Malo, France, April 2009.
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BM3D-SAPCA
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Comparison of BM3D-SAPCA with other
filters
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Comparison of BM3D-SAPCA with other
filters
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Comparison of BM3D-SAPCA with other
filters
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Comparison of BM3D-SAPCA with other
filters (PSNR, SSIM)

Original Noisy, σ = 35 BM3D (27.82, 0.8207)

P.SADCT (27.51, 0.8143) SA-BM3D (28.02, 0.8228) BM3D-SAPCA (28.16, 0.8269)
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Interpolation for Bayer Pattern

Original scene

Color Filter Array

Observation

Color Interpolation
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Competitiveness with state-of-the-art
techniques

The proposed CFAI technique adapts to spatial properties of an image
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Conventional Approach for Noiseless Data
(Hamilton-Adams)
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Proposed Approach for Noiseless Data
(Spatially-Adaptive LPA-ICI)
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Simulation of Radon reconstruction from sparse projections
(approximating Radon projections as radial lines in FFT domain:
Sparse projections: 11 radial lines)

Compressed Sensing Image Reconstruction via
Recursive BM3D
Egiazarian, K., A. Foi, and V. Katkovnik, “Compressed Sensing Image Reconstruction via
Recursive Spatially Adaptive Filtering, ICIP 2007
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Compressed Sensing Image Reconstruction
via Recursive BM3D
Egiazarian, K., A. Foi, and V. Katkovnik, “Compressed Sensing Image
Reconstruction via Recursive Spatially Adaptive Filtering, ICIP 2007
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Simulation of Radon reconstruction from sparse projections
(approximating Radon projections as Limited-angle in FFT
domain)
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BM3D for upsampling and super-resolution

Image upsampling or zooming, can be de.ned as the process of resampling a
single low-resolution (LR) image on a high-resolution grid.

The process of combining a sequence of undersampled and degraded low-
resolution images in order to produce a single high-resolution image is commonly
referred to as a Super-resolution (SR) reconstruction.

Modern SR methods (e.g., Protter et al. 2008, Ebrahimi and Vrscay 2008) are
based on the nonlocal means (NLM) filtering paradigm (Buades-Coll-Morel,
2005).
• No explicit registration: one-to-one pixel mapping between frames is replaced by
a one-to-many mapping.
The BM3D and V-BM3D algorithms share with the NLM the idea of exploiting
nonlocal similarity between blocks. However, in (V-)BM3D a more powerful
transform-domain modeling is used.



Department of Signal Processing

87

BM3D based superresolution
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Image upsampling x 4
(pixel replication)
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Image upsampling x 4 in wavelet domain
(Danielyan et al. EUSIPCO 2008)
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Video superresolution
comparison with (Protter et. al.)

1. M. Protter, M. Elad, H. Takeda, and P. Milanfar, .Generalizing the Non-Local-Means to
Super-Resolution Reconstruction., IEEE Trans. Image Process., 2008.

2. A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, .Image upsampling via spatially
adaptive block-matching filtering, EUSIPCO2008, Lausanne, Switzerland, Aug. 2008.
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Examples: Video denoising using V-BM3D
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Examples: Video denoising using V-BM3D
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Examples: Video denoising using V-BM3D
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Conclusions

Our algorithms have been licensed to major digital camera
manufacturers and are already in use by various research
institutes for processing and enhancing their images.

Tomographic reconstruction of mouse embryo with BM3D filtering of axial slices
(Harvard Medical School, Boston MA, 2010)

BM3D
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Conclusions
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