Spring School - April 2016 - Spartan/Macsenet Francis Bach Slides generously provided by Mark Schmidt

Modern Convex Optimization Methods for Large-Scale Empirical Risk Minimization (Part I: Primal Methods)

International Conference on Machine Learning

Peter Richtárik and Mark Schmidt

Further reading: July 2015

- -Dimitri Bertsekas. Convex Optimization Algorithms, Athena Scientific, 2015.
- -Yurii Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer Academic Publishers, 2004.
- -Sebastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning, 8(3-4):231–357, 2015.

Context: Big Data and Big Models

- We are collecting data at unprecedented rates.
 - Seen across many fields of science and engineering.
 - Not gigabytes, but terabytes or petabytes (and beyond).

Context: Big Data and Big Models

- We are collecting data at unprecedented rates.
 - Seen across many fields of science and engineering.
 - Not gigabytes, but terabytes or petabytes (and beyond).

Context: Big Data and Big Models

- We are collecting data at unprecedented rates.
 - Seen across many fields of science and engineering.
 - Not gigabytes, but terabytes or petabytes (and beyond).

- Machine learning can use big data to fit richer models:
 - Bioinformatics.
 - Computer vision.
 - Speech recognition.
 - Product recommendation.
 - Machine translation.

Common Framework: Empirical Risk Minimization

• The most common framework is empirical risk minimization:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

Common Framework: Empirical Risk Minimization

• The most common framework is empirical risk minimization:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- We have *n* observations a_i (and possibly labels b_i).
- We want to find optimal parameters x^* .

• The most common framework is empirical risk minimization:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^{N} L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- We have *n* observations a_i (and possibly labels b_i).
- We want to find optimal parameters x^* .
- Examples range from squared error with 2-norm regularization,

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N \frac{1}{2} (a_i^T x - b_i)^2 + \frac{\lambda}{2} ||x||^2,$$

but also conditional random fields and deep neural networks.

Common Framework: Empirical Risk Minimization

• The most common framework is empirical risk minimization:

$$\min_{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} L(x, a_{i}, b_{i}) + \lambda r(x)$$
data fitting term + regularizer

- We have *n* observations a_i (and possibly labels b_i).
- We want to find optimal parameters x^* .
- Examples range from squared error with 2-norm regularization,

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N \frac{1}{2} (a_i^T x - b_i)^2 + \frac{\lambda}{2} ||x||^2,$$

but also conditional random fields and deep neural networks.

- Main practical challenges:
 - Designing/learning good features a_i.
 - Efficiently solving the problem when N or P are very large.

violivation. TVIII Learn about Convex Optimization:

- Why learn about large-scale optimization?
 - Optimization is at the core of many ML algorithms.
 - Can't solve huge problems with traditional techniques.

- Why learn about large-scale optimization?
 - Optimization is at the core of many ML algorithms.
 - Can't solve huge problems with traditional techniques.
- Why in particular learn about convex optimization?

Motivation: Why Learn about Convex Optimization?

- Why learn about large-scale optimization?
 - Optimization is at the core of many ML algorithms.
 - Can't solve huge problems with traditional techniques.
- Why in particular learn about convex optimization?
 - Among only efficiently-solvable continuous problems.

Motivation: Why Learn about Convex Optimization?

- Why learn about large-scale optimization?
 - Optimization is at the core of many ML algorithms.
 - Can't solve huge problems with traditional techniques.
- Why in particular learn about convex optimization?
 - Among only efficiently-solvable continuous problems.
 - You can do a lot with convex models.
 - (least squares, lasso, generlized linear models, SVMs, CRFs, etc.)
 - Empirically effective non-convex methods are often based methods with good properties for convex objectives.

(functions are locally convex around minimizers)

- Why learn about large-scale optimization?
 - Optimization is at the core of many ML algorithms.
 - Can't solve huge problems with traditional techniques.
- Why in particular learn about convex optimization?
 - Among only efficiently-solvable continuous problems.
 - You can do a lot with convex models.

(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)

 Empirically effective non-convex methods are often based methods with good properties for convex objectives.

(functions are locally convex around minimizers)

• Tools from convex analysis are being extended to non-convex.

How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n}f(x).$$

How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n}f(x).$$

General function: impossible!

How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n}f(x).$$

General function: impossible!

We need to make some assumptions about the function:

$$|f(x)-f(y)|\leq L||x-y||.$$

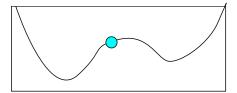
How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n} f(x).$$

General function: impossible!

We need to make some assumptions about the function:

$$|f(x)-f(y)|\leq L||x-y||.$$



How hard is real-valued optimization?

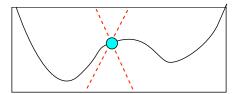
How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n}f(x).$$

General function: impossible!

We need to make some assumptions about the function:

$$|f(x)-f(y)|\leq L\|x-y\|.$$



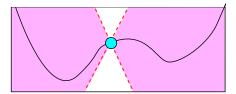
How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n}f(x).$$

General function: impossible!

We need to make some assumptions about the function:

$$|f(x)-f(y)|\leq L\|x-y\|.$$



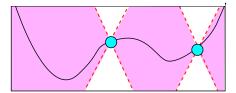
How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n} f(x).$$

General function: impossible!

We need to make some assumptions about the function:

$$|f(x)-f(y)|\leq L\|x-y\|.$$



How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n} f(x).$$

General function: impossible!

We need to make some assumptions about the function:

• Assume *f* is Lipschitz-continuous: (can not change too quickly)

$$|f(x)-f(y)| \le L||x-y||.$$

• After t iterations, the error of any algorithm is $\Omega(1/t^{1/n})$. (and grid-search is nearly optimal)

How long to find an ϵ -optimal minimizer of a real-valued function?

$$\min_{x\in\mathbb{R}^n} f(x).$$

General function: impossible!

We need to make some assumptions about the function:

• Assume *f* is Lipschitz-continuous: (can not change too quickly)

$$|f(x)-f(y)| \le L||x-y||.$$

- After t iterations, the error of any algorithm is $\Omega(1/t^{1/n})$. (and grid-search is nearly optimal)
- Optimization is hard, but assumptions make a big difference.

(we went from impossible to very slow)

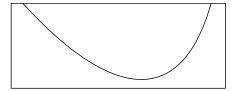
$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad for \ \theta \in [0,1].$$

- Function is below linear interpolation between x and y.
- Implies that all local minima are global minima.

Convex Functions: Three Characterizations

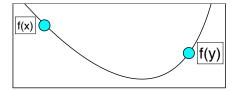
$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad for \ \theta \in [0,1].$$

- Function is below linear interpolation between x and y.
- Implies that all local minima are global minima.



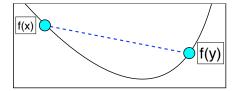
$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad for \ \theta \in [0, 1].$$

- Function is below linear interpolation between x and y.
- Implies that all local minima are global minima.



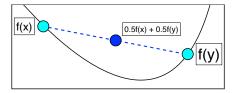
$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad \text{for } \theta \in [0,1].$$

- Function is below linear interpolation between x and y.
- Implies that all local minima are global minima.



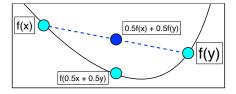
$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad \text{for } \theta \in [0,1].$$

- Function is below linear interpolation between x and y.
- Implies that all local minima are global minima.



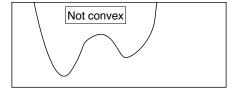
$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad for \ \theta \in [0,1].$$

- Function is below linear interpolation between x and y.
- Implies that all local minima are global minima.



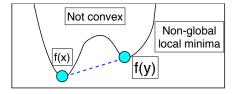
$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad \text{for } \theta \in [0,1].$$

- Function is below linear interpolation between x and y.
- Implies that all local minima are global minima.



$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad for \ \theta \in [0,1].$$

- Function is below linear interpolation between x and y.
- Implies that all local minima are global minima.



$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad for \ \theta \in [0, 1].$$

Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad for \ \theta \in [0,1].$$

A differentiable function f is convex if for all x and y we have

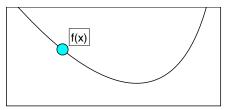
$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

A function f is convex if for all x and y we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad for \ \theta \in [0, 1].$$

A differentiable function f is convex if for all x and y we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$



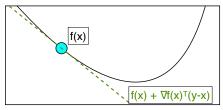
Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad for \ \theta \in [0, 1].$$

A differentiable function f is convex if for all x and y we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$



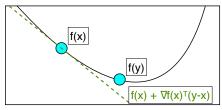
Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad for \ \theta \in [0, 1].$$

A differentiable function f is convex if for all x and y we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$



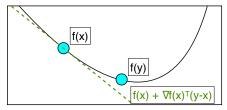
A function f is convex if for all x and y we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \text{for } \theta \in [0, 1].$$

A differentiable function f is convex if for all x and y we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

• The function is globally above the tangent at x.



• If $\nabla f(y) = 0$, implies y is a a global minimizer.

Motivation

Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y), \quad \text{for } \theta \in [0,1].$$

A differentiable function f is convex if for all x and y we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

Motivation

A function f is convex if for all x and y we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \text{for } \theta \in [0, 1].$$

A differentiable function f is convex if for all x and y we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

A twice-differentiable function f is convex if for all x we have

$$\nabla^2 f(x) \succeq 0$$

• All eigenvalues of 'Hessian' are non-negative.

Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad for \ \theta \in [0, 1].$$

A differentiable function f is convex if for all x and y we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x),$$

A twice-differentiable function f is convex if for all x we have

$$\nabla^2 f(x) \succeq 0$$

- All eigenvalues of 'Hessian' are non-negative.
- The function is *flat or curved upwards* in every direction.
- This is usually the easiest way to show a function is convex.

Examples of Convex Functions

Some simple convex functions:

- f(x) = c
- $f(x) = a^T x$
- $f(x) = ax^2 + b$ (for a > 0)
- $f(x) = \exp(ax)$
- $f(x) = x \log x$ (for x > 0)
- $f(x) = ||x||^2$
- $f(x) = ||x||_p$
- $f(x) = \max_i \{x_i\}$

Some simple convex functions:

- \bullet f(x) = c
- $f(x) = a^T x$
- $f(x) = ax^2 + b$ (for a > 0)
- $f(x) = \exp(ax)$
- $f(x) = x \log x$ (for x > 0)
- $f(x) = ||x||^2$
- $f(x) = ||x||_p$
- $f(x) = \max_i \{x_i\}$

Some other notable examples:

- $f(x, y) = \log(e^x + e^y)$
- $f(X) = \log \det X$ (for X positive-definite).
- $f(x, Y) = x^T Y^{-1} x$ (for Y positive-definite)

Motivation

Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

Composition with affine mapping:

$$g(x)=f(Ax+b).$$

Pointwise maximum:

$$f(x) = \max_{i} \{f_i(x)\}.$$

Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

Composition with affine mapping:

$$g(x) = f(Ax + b).$$

Pointwise maximum:

$$f(x) = \max_{i} \{f_i(x)\}.$$

Show that least-residual problems are convex for any ℓ_p -norm:

$$f(x) = ||Ax - b||_{p}$$

Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

2 Composition with affine mapping:

$$g(x) = f(Ax + b).$$

Pointwise maximum:

$$f(x) = \max_{i} \{f_i(x)\}.$$

Show that least-residual problems are convex for any ℓ_p -norm:

$$f(x) = ||Ax - b||_{p}$$

We know that $\|\cdot\|_p$ is a norm, so it follows from (2).

Motivation

Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

Composition with affine mapping:

$$g(x) = f(Ax + b).$$

Pointwise maximum:

$$f(x) = \max_{i} \{f_i(x)\}.$$

Show that SVMs are convex:

$$f(x) = \frac{1}{2}||x||^2 + C\sum_{i=1}^n \max\{0, 1 - b_i a_i^T x\}.$$

Operations that Preserve Convexity

Non-negative weighted sum:

$$f(x) = \theta_1 f_1(x) + \theta_2 f_2(x).$$

2 Composition with affine mapping:

$$g(x) = f(Ax + b).$$

Pointwise maximum:

$$f(x) = \max_{i} \{f_i(x)\}.$$

Show that SVMs are convex:

$$f(x) = \frac{1}{2}||x||^2 + C\sum_{i=1}^n \max\{0, 1 - b_i a_i^T x\}.$$

The first term has Hessian I > 0, for the second term use (3) on the two (convex) arguments, then use (1) to put it all together.

Outline

- Motivation
- 2 Gradient Method
- Stochastic Subgradien
- Finite-Sum Methods
- Non-Smooth Objectives

Motivation for Gradient Methods

 We can solve convex optimization problems in polynomial-time by interior-point methods

- We can solve convex optimization problems in polynomial-time by *interior-point* methods
- But these solvers require $O(P^2)$ or worse cost per iteration.
 - Infeasible for applications where P may be in the billions.

- We can solve convex optimization problems in polynomial-time by *interior-point* methods
- But these solvers require $O(P^2)$ or worse cost per iteration.
 - Infeasible for applications where P may be in the billions.
- Large-scale problems have renewed interest gradient methods:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

- We can solve convex optimization problems in polynomial-time by *interior-point* methods
- But these solvers require $O(P^2)$ or worse cost per iteration.
 - Infeasible for applications where P may be in the billions.
- Large-scale problems have renewed interest gradient methods:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

- Only have O(P) iteration cost!
- But how many iterations are needed?

Logistic Regression with 2-Norm Regularization

Let's consider logistic regression with 2-norm regularization:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))) + \frac{\lambda}{2} ||x||^2.$$

- Objective f is convex.
- First term is Lipschitz continuous, second term is not.

Logistic Regression with 2-Norm Regularization

Let's consider logistic regression with 2-norm regularization:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))) + \frac{\lambda}{2} ||x||^2.$$

- Objective f is convex.
- First term is Lipschitz continuous, second term is not.
- But we have

$$\mu I \leq \nabla^2 f(x) \leq LI$$
,

for some L and μ .

$$(L \leq \frac{1}{4} ||A||_2^2 + \lambda, \ \mu \geq \lambda)$$

Logistic Regression with 2-Norm Regularization

Let's consider logistic regression with 2-norm regularization:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))) + \frac{\lambda}{2} ||x||^2.$$

- Objective f is convex.
- First term is Lipschitz continuous, second term is not.
- But we have

$$\mu I \leq \nabla^2 f(x) \leq LI$$
,

for some L and μ .

$$(L \leq \frac{1}{4} ||A||_2^2 + \lambda, \ \mu \geq \lambda)$$

- We say that the gradient is Lipschitz-continuous.
- We say that the function is strongly-convex.

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \leq LI$.

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \leq LI$.

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{L}{2} ||y - x||^{2}$$

- Global quadratic upper bound on function value.
- Variant of gradient method if we set x^{t+1} to minimum y value:

$$x^{t+1} = x^t - \frac{1}{I} \nabla f(x^t).$$

Plugging this value in:

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2!} \|\nabla f(x^t)\|^2$$
.

Guaranteed decrease of objective.

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \leq LI$.

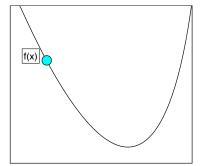
$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \leq LI$.

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{L}{2} ||y - x||^{2}$$

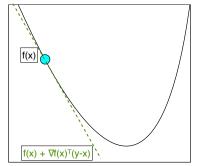


• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \leq LI$.

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

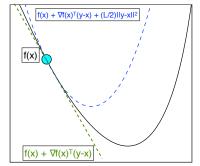


• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \prec LI$.

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

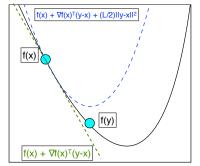


• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \prec LI$.

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

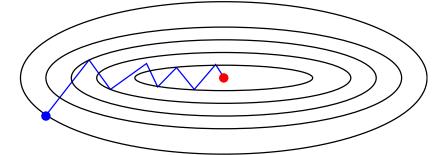


• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \leq LI$.

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \succ \mu I$.

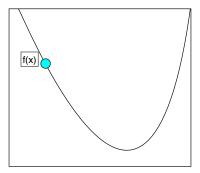
$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$$

• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \succ \mu I$.

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$$

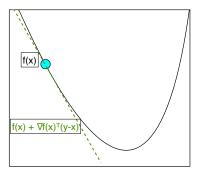


• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \succ \mu I$.

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$$

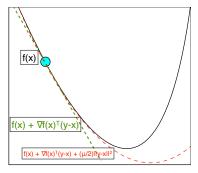


• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \succeq \mu I$.

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2$$



• From Taylor's theorem, for some z we have:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(z) (y - x)$$

• Use that $\nabla^2 f(z) \succ \mu I$.

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||^{2}$$

- Global quadratic lower bound on function value.
- Minimize both sides in terms of y:

$$f(x^*) \ge f(x) - \frac{1}{2u} \|\nabla f(x)\|^2.$$

Upper bound on how far we are from the solution.

Linear Convergence of Gradient Descent

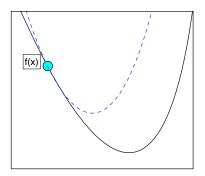
• We have bounds on x^{t+1} and x^* :

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2I} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2I} \|\nabla f(x^t)\|^2.$$

Linear Convergence of Gradient Descent

• We have bounds on x^{t+1} and x^* :

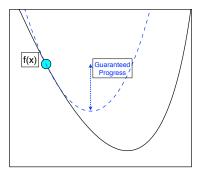
$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2u} \|\nabla f(x^t)\|^2.$$



Linear Convergence of Gradient Descent

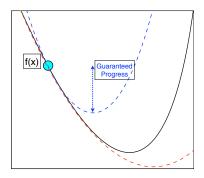
• We have bounds on x^{t+1} and x^* :

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2\mu} \|\nabla f(x^t)\|^2.$$



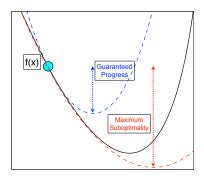
• We have bounds on x^{t+1} and x^* :

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2\mu} \|\nabla f(x^t)\|^2.$$



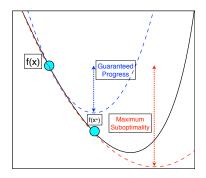
• We have bounds on x^{t+1} and x^* :

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2\mu} \|\nabla f(x^t)\|^2.$$



• We have bounds on x^{t+1} and x^* :

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2u} \|\nabla f(x^t)\|^2.$$



• We have bounds on x^{t+1} and x^* :

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2\mu} \|\nabla f(x^t)\|^2.$$

combine them to get

$$f(x^{t+1}) - f(x^*) \le \left(1 - \frac{\mu}{I}\right) [f(x^t) - f(x^*)]$$

• We have bounds on x^{t+1} and x^* :

$$f(x^{t+1}) \le f(x^t) - \frac{1}{2L} \|\nabla f(x^t)\|^2, \quad f(x^*) \ge f(x^t) - \frac{1}{2\mu} \|\nabla f(x^t)\|^2.$$

combine them to get

$$f(x^{t+1}) - f(x^*) \le \left(1 - \frac{\mu}{L}\right) [f(x^t) - f(x^*)]$$

• This gives a linear convergence rate:

$$f(x^t) - f(x^*) \le \left(1 - \frac{\mu}{L}\right)^t [f(x^0) - f(x^*)]$$

Each iteration multiplies the error by a fixed amount.

(very fast if μ/L is not too close to one)

• What about maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

• What about maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

We now only have

$$0 \leq \nabla^2 f(x) \leq LI.$$

$$f(x^*) \le f(x) + \nabla f(x)^T (x^* - x)$$

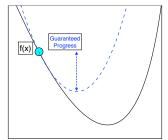
• What about maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

We now only have

$$0 \leq \nabla^2 f(x) \leq LI$$
.

$$f(x^*) \le f(x) + \nabla f(x)^T (x^* - x)$$



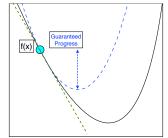
• What about maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

We now only have

$$0 \leq \nabla^2 f(x) \leq LI$$
.

$$f(x^*) \le f(x) + \nabla f(x)^T (x^* - x)$$



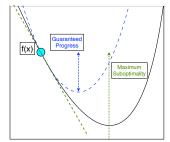
• What about maximum-likelihood logistic regression?

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

We now only have

$$0 \leq \nabla^2 f(x) \leq LI$$
.

$$f(x^*) \le f(x) + \nabla f(x)^T (x^* - x)$$



Consider maximum-likelihood logistic regression:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

We now only have

$$0 \leq \nabla^2 f(x) \leq LI.$$

• Convexity only gives a linear upper bound on $f(x^*)$:

$$f(x^*) \le f(x) + \nabla f(x)^T (x^* - x)$$

• If some x^* exists, we have the sublinear convergence rate:

$$f(x^t) - f(x^*) = O(1/t)$$

(compare to slower $\Omega(1/t^{-1/N})$ for general Lipschitz functions)

Consider maximum-likelihood logistic regression:

$$f(x) = \sum_{i=1}^{n} \log(1 + exp(-b_i(x^T a_i))).$$

We now only have

$$0 \leq \nabla^2 f(x) \leq LI.$$

• Convexity only gives a linear upper bound on $f(x^*)$:

$$f(x^*) \le f(x) + \nabla f(x)^T (x^* - x)$$

• If some x^* exists, we have the sublinear convergence rate:

$$f(x^t) - f(x^*) = O(1/t)$$

(compare to slower $\Omega(1/t^{-1/N})$ for general Lipschitz functions)

• If f is convex, then $f + \lambda ||x||^2$ is strongly-convex.

Gradient Method: Practical Issues

• In practice, searching for step size (line-search) is usually much faster than $\alpha = 1/L$.

(and doesn't require knowledge of L)

• In practice, searching for step size (line-search) is usually much faster than $\alpha = 1/L$.

(and doesn't require knowledge of L)

- Basic Armijo backtracking line-search:
 - **1** Start with a large value of α .
 - ② Divide α in half until we satisfy (typically value is $\gamma = .0001$)

$$f(x^{t+1}) \le f(x^t) - \gamma \alpha ||\nabla f(x^t)||^2.$$

Gradient Method: Practical Issues

 In practice, searching for step size (line-search) is usually much faster than $\alpha = 1/L$.

(and doesn't require knowledge of L)

- Basic Armijo backtracking line-search:
 - **1** Start with a large value of α .
 - Divide α in half until we satisfy (typically value is $\gamma = .0001$)

$$f(x^{t+1}) \le f(x^t) - \gamma \alpha ||\nabla f(x^t)||^2.$$

• Practical methods may use Wolfe conditions (so α isn't too small), and/or use *interpolation* to propose trial step sizes.

(with good interpolation, ≈ 1 evaluation of f per iteration)

Gradient Method: Practical Issues

 In practice, searching for step size (line-search) is usually much faster than $\alpha = 1/L$.

(and doesn't require knowledge of L)

- Basic Armijo backtracking line-search:
 - **1** Start with a large value of α .
 - Divide α in half until we satisfy (typically value is $\gamma = .0001$)

$$f(x^{t+1}) \le f(x^t) - \gamma \alpha ||\nabla f(x^t)||^2.$$

• Practical methods may use Wolfe conditions (so α isn't too small), and/or use *interpolation* to propose trial step sizes.

(with good interpolation, ≈ 1 evaluation of f per iteration)

Also, check your derivative code!

$$\nabla_i f(x) \approx \frac{f(x + \delta e_i) - f(x)}{\delta}$$

• For large-scale problems you can check a random direction d:

$$\nabla f(x)^T d \approx \frac{f(x + \delta d) - f(x)}{\delta}$$

Accelerated Gradient Method

• Is this the best algorithm under these assumptions?

Accelerated Gradient Method

• Is this the best algorithm under these assumptions?

Algorithm	Assumptions	Rate
Gradient	Convex	O(1/t)
Nesterov	Convex	$O(1/t^2)$
Gradient	Strongly-Convex	$O((1-\mu/L)^t)$
Nesterov	Strongly-Convex	$O((1-\sqrt{\mu/L})^t)$

• Is this the best algorithm under these assumptions?

Algorithm	Assumptions	Rate
Gradient	Convex	O(1/t)
Nesterov	Convex	$O(1/t^2)$
Gradient	Strongly-Convex	$O((1-\mu/L)^t)$
Nesterov	Strongly-Convex	$O((1-\sqrt{\mu/L})^t)$

Nesterov's accelerated gradient method:

$$x_{t+1} = y_t - \alpha_t \nabla f(y_t),$$

$$y_{t+1} = x_t + \beta_t (x_{t+1} - x_t),$$

for appropriate α_t , β_t .

- Rate is nearly-optimal for dimension-independent algorithm.
- Similar to heavy-ball/momentum and conjugate gradient.

Accelerated Gradient Method

• Is this the best algorithm under these assumptions?

Algorithm	Assumptions	Rate
Gradient	Convex	O(1/t)
Nesterov	Convex	$O(1/t^2)$
Gradient	Strongly-Convex	$O((1-\mu/L)^t)$
Nesterov	Strongly-Convex	$O((1-\sqrt{\mu/L})^t)$

Nesterov's accelerated gradient method:

$$x_{t+1} = y_t - \alpha_t \nabla f(y_t),$$

$$y_{t+1} = x_t + \beta_t (x_{t+1} - x_t),$$

for appropriate α_t , β_t .

- Rate is nearly-optimal for dimension-independent algorithm.
- Similar to heavy-ball/momentum and conjugate gradient.
- For logistic regression and many other losses, we can get linear convergence without strong-convexity [Luo & Tseng, 1993].

The oldest differentiable optimization method is Newton's.

(also called IRLS for functions of the form f(Ax))

Modern form uses the update

$$x^{t+1} = x^t - \alpha d,$$

where d is a solution to the system

$$abla^2 f(x)d = \nabla f(x).$$
 (Assumes $\nabla^2 f(x) \succ 0$)

The oldest differentiable optimization method is Newton's.

(also called IRLS for functions of the form f(Ax))

Modern form uses the update

$$x^{t+1} = x^t - \alpha d,$$

where d is a solution to the system

$$abla^2 f(x)d = \nabla f(x).$$
 (Assumes $\nabla^2 f(x) \succ 0$)

• Equivalent to minimizing the quadratic approximation:

$$f(y) \approx f(x) + \nabla f(x)^T (y - x) + \frac{1}{2\alpha} \|y - x\|_{\nabla^2 f(x)}^2.$$
(recall that $\|x\|_{\mathcal{U}}^2 = x^T Hx$)

The oldest differentiable optimization method is Newton's.

(also called IRLS for functions of the form f(Ax))

Modern form uses the update

$$x^{t+1} = x^t - \alpha d,$$

where d is a solution to the system

$$abla^2 f(x)d = \nabla f(x).$$
 (Assumes $\nabla^2 f(x) \succ 0$)

• Equivalent to minimizing the quadratic approximation:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2\alpha} ||y - x||_{\nabla^{2} f(x)}^{2}.$$

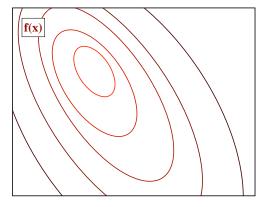
(recall that
$$||x||_H^2 = x^T H x$$
)

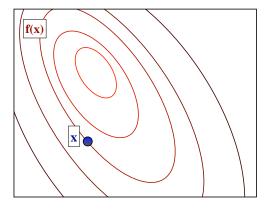
We can generalize the Armijo condition to

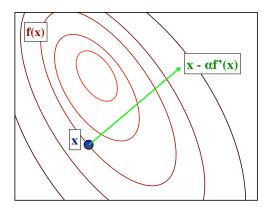
$$f(x^{t+1}) \le f(x^t) + \gamma \alpha \nabla f(x^t)^T d.$$

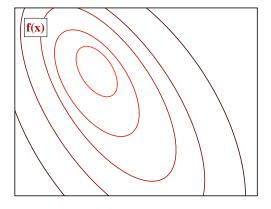
• Has a natural step length of $\alpha = 1$.

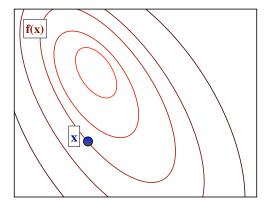
(always accepted when close to a minimizer)

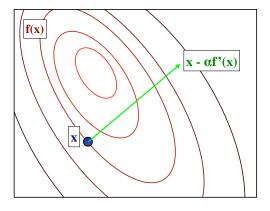




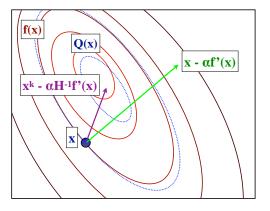












• If $\nabla^2 f(x)$ is Lipschitz-continuous and $\nabla^2 f(x) \succeq \mu$, then close to x^* Newton's method has local superlinear convergence:

$$f(x^{t+1}) - f(x^*) \le \rho_t[f(x^t) - f(x^*)],$$

with $\lim_{t\to\infty} \rho_t = 0$.

- Converges very fast, use it if you can!
- But requires solving $\nabla^2 f(x)d = \nabla f(x)$.

Convergence Rate of Newton's Method

• If $\nabla^2 f(x)$ is Lipschitz-continuous and $\nabla^2 f(x) \succeq \mu$, then close to x^* Newton's method has local superlinear convergence:

$$f(x^{t+1}) - f(x^*) \le \rho_t [f(x^t) - f(x^*)],$$

with $\lim_{t\to\infty} \rho_t = 0$.

- Converges very fast, use it if you can!
- But requires solving $\nabla^2 f(x)d = \nabla f(x)$.
- Get global rates under various assumptions (cubic-regularization/accelerated/self-concordant).

Newton's Method: Practical Issues

There are many practical variants of Newton's method:

- Modify the Hessian to be positive-definite.
- Only compute the Hessian every m iterations.
- Only use the diagonals of the Hessian.
- Quasi-Newton: Update a (diagonal plus low-rank) approximation of the Hessian (BFGS, L-BFGS).

There are many practical variants of Newton's method:

- Modify the Hessian to be positive-definite.
- Only compute the Hessian every *m* iterations.
- Only use the diagonals of the Hessian.
- Quasi-Newton: Update a (diagonal plus low-rank) approximation of the Hessian (BFGS, L-BFGS).
- Hessian-free: Compute d inexactly using Hessian-vector products:

$$\nabla^2 f(x)d = \lim_{\delta \to 0} \frac{\nabla f(x + \delta d) - \nabla f(x)}{\delta}$$

 Barzilai-Borwein: Choose a step-size that acts like the Hessian over the last iteration:

$$\alpha = \frac{(x^{t+1} - x^t)^T (\nabla f(x^{t+1}) - \nabla f(x^t))}{\|\nabla f(x^{t+1}) - f(x^t)\|^2}$$

Another related method is nonlinear conjugate gradient.

Stochastic Subgradient

- Stochastic Subgradient

• Recall the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^{N} L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

Big-N Problems

• Recall the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- What if number of training examples N is very large?
 - E.g., ImageNet has more than 14 million annotated images.

• We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.

- We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^N \nabla f_i(x_t).$$

- Iteration cost is linear in N.
- ullet Convergence with constant $lpha_t$ or line-search.

- We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^N \nabla f_i(x_t).$$

- Iteration cost is linear in N.
- Convergence with constant α_t or line-search.
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i from $\{1, 2, ..., N\}$.

$$x_{t+1} = x_t - \alpha_t f_i'(x_t).$$

- We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^N \nabla f_i(x_t).$$

- Iteration cost is linear in N.
- Convergence with constant α_t or line-search.
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i from $\{1, 2, ..., N\}$.

$$x_{t+1} = x_t - \alpha_t f_i'(x_t).$$

Gives unbiased estimate of true gradient,

$$\mathbb{E}[f'_{(i)}(x)] = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \nabla f(x).$$

• Iteration cost is independent of N.

- We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^N \nabla f_i(x_t).$$

- Iteration cost is linear in N.
- Convergence with constant α_t or line-search.
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i from $\{1, 2, ..., N\}$.

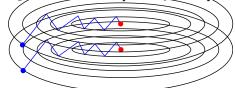
$$x_{t+1} = x_t - \alpha_t f_i'(x_t).$$

Gives unbiased estimate of true gradient,

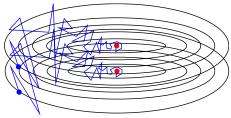
$$\mathbb{E}[f'_{(i)}(x)] = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \nabla f(x).$$

- Iteration cost is independent of N.
- Convergence requires $\alpha_t \to 0$.

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:



• Stochastic gradient method [Robbins & Monro, 1951]:



Stochastic iterations are *N* times faster, but how many iterations?

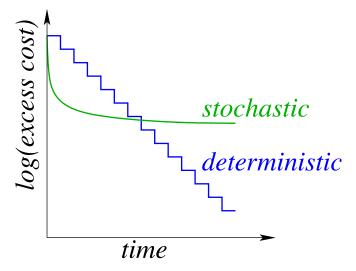
Stochastic iterations are *N* times faster, but how many iterations?

Assumption	Deterministic	Stochastic
Convex	$O(1/t^2)$	$O(1/\sqrt{t})$
Strongly	$O((1-\sqrt{\mu/L})^t)$	O(1/t)

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable if only unbiased gradient available.

Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:



Stochastic will be superior for low-accuracy/time situations.

Stochastic vs. Deterministic for Non-Smooth

• Consider the binary support vector machine objective:

$$f(x) = \sum_{i=1}^{n} \max\{0, 1 - b_i(x^T a_i)\} + \frac{\lambda}{2} ||x||^2.$$

Stochastic vs. Deterministic for Non-Smooth

• Consider the binary support vector machine objective:

$$f(x) = \sum_{i=1}^{n} \max\{0, 1 - b_i(x^T a_i)\} + \frac{\lambda}{2} ||x||^2.$$

Rates for subgradient methods for non-smooth objectives:

Assumption	Deterministic	Stochastic
Convex	$O(1/\sqrt{t})$	$O(1/\sqrt{t})$
Strongly	O(1/t)	O(1/t)

Other black-box methods (cutting plane) are not faster.

Stochastic vs. Deterministic for Non-Smooth

• Consider the binary support vector machine objective:

$$f(x) = \sum_{i=1}^{n} \max\{0, 1 - b_i(x^T a_i)\} + \frac{\lambda}{2} ||x||^2.$$

Rates for subgradient methods for non-smooth objectives:

Assumption	Deterministic	Stochastic
Convex	$O(1/\sqrt{t})$	$O(1/\sqrt{t})$
Strongly	O(1/t)	O(1/t)

- Other black-box methods (cutting plane) are not faster.
- For non-smooth problems:
 - Stochastic methods have same rate as smooth case.
 - Deterministic methods are not faster than stochastic method.
 - So use stochastic subgradient (iterations are *n* times faster).

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \geq f(x) + d^{T}(y - x), \forall y.$$

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

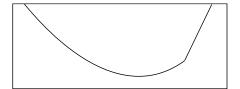
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

- At differentiable x:
 - Only subgradient is $\nabla f(x)$.
- At non-differentiable x:
 - We have a set of subgradients.
 - Called the sub-differential, $\partial f(x)$.
- Note that $0 \in \partial f(x)$ iff x is a global minimum.

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

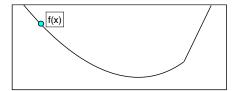
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

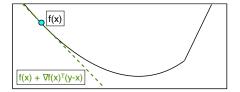
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

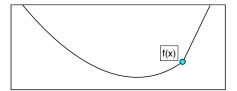
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

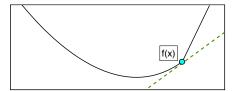
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

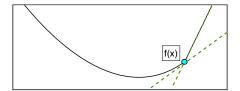
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

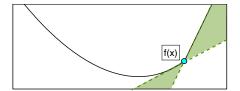
$$f(y) \ge f(x) + d^{\mathsf{T}}(y - x), \forall y.$$



Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^{\mathsf{T}}(y - x), \forall y.$$

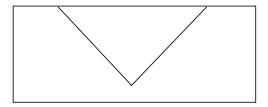


Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$

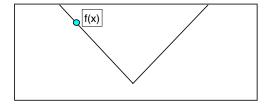
Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



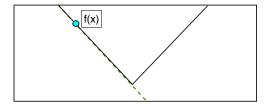
Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



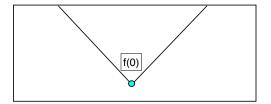
Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



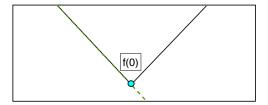
Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



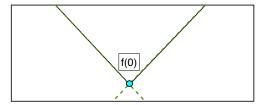
Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



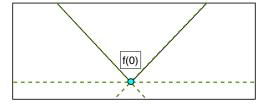
Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



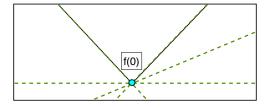
Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



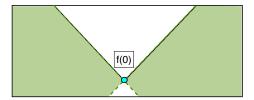
Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$



Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$

(sign of the variable if non-zero, anything in [-1,1] at 0)

Sub-differential of max function:

$$\partial \max\{f_1(x), f_2(x)\} =$$

Sub-Differential of Absolute Value and Max Functions

Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ [-1, 1] & x = 0 \end{cases}$$

(sign of the variable if non-zero, anything in [-1, 1] at 0)

Sub-differential of max function:

$$\partial \max\{f_1(x), f_2(x)\} = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_2(x) > f_1(x) \\ \theta \nabla f_1(x) + (1 - \theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

(any convex combination of the gradients of the argmax)

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha d,$$

for some $d \in \partial f(x^t)$.

The basic subgradient method:

$$x^{t+1} = x^t - \alpha d,$$

for some $d \in \partial f(x^t)$.

• The steepest descent choice is given by $\operatorname{argmin}_{d \in \partial f(x)} \{ \| d \| \}$. (often hard to compute, but easy for ℓ_1 -regularization)

The basic subgradient method:

$$x^{t+1} = x^t - \alpha d,$$

for some $d \in \partial f(x^t)$.

- The steepest descent choice is given by $\operatorname{argmin}_{d \in \partial f(x)} \{ \| d \| \}$. (often hard to compute, but easy for ℓ_1 -regularization)
- ullet Otherwise, may increase the objective even for small α .
- But $||x^{t+1} x^*|| \le ||x^t x^*||$ for small enough α .
- For convergence, we require $\alpha \to 0$.

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha d,$$

for some $d \in \partial f(x^t)$.

- The steepest descent choice is given by $\operatorname{argmin}_{d \in \partial f(x)} \{ \| d \| \}$. (often hard to compute, but easy for ℓ_1 -regularization)
- ullet Otherwise, may increase the objective even for small α .
- But $||x^{t+1} x^*|| \le ||x^t x^*||$ for small enough α .
- For convergence, we require $\alpha \to 0$.
- The basic stochastic subgradient method:

$$x^{t+1} = x^t - \alpha d.$$

for some $d \in \partial f_i(x^t)$ for some random $i \in \{1, 2, ..., N\}$.

Stochastic Subgradient Methods in Practice

• The theory says to use decreasing sequence $\alpha_t = 1/\mu t$:

$$i_t = \operatorname{rand}(1, 2, \dots, N), \quad \alpha_t = \frac{1}{\mu t}$$

$$x^{t+1} = x^t - \alpha_t f'_{i_t}(x^t).$$

- O(1/t) for smooth objectives.
- $O(\log(t)/t)$ for non-smooth objectives.

Stochastic Subgradient Methods in Practice

• The theory says to use decreasing sequence $\alpha_t = 1/\mu t$:

$$i_t = \operatorname{rand}(1, 2, \dots, N), \quad \alpha_t = \frac{1}{\mu t}$$

$$x^{t+1} = x^t - \alpha_t f'_{i_t}(x^t).$$

- O(1/t) for smooth objectives.
- $O(\log(t)/t)$ for non-smooth objectives.
- Except for some special cases, you should not do this.
 - Initial steps are huge: usually $\mu = O(1/N)$ or $O(1/\sqrt{N})$.
 - Later steps are tiny: 1/t gets small very quickly.
 - Convergence rate is not robust to mis-specification of μ .
 - No adaptation to 'easier' problems than worst case.

Stochastic Subgradient Methods in Practice

• The theory says to use decreasing sequence $\alpha_t = 1/\mu t$:

$$i_t = \operatorname{rand}(1, 2, \dots, N), \quad \alpha_t = \frac{1}{\mu t}$$

$$x^{t+1} = x^t - \alpha_t f'_{i}(x^t).$$

- O(1/t) for smooth objectives.
- $O(\log(t)/t)$ for non-smooth objectives.
- Except for some special cases, you should not do this.
 - Initial steps are huge: usually $\mu = O(1/N)$ or $O(1/\sqrt{N})$.
 - Later steps are tiny: 1/t gets small very quickly.
 - Convergence rate is not robust to mis-specification of μ .
 - No adaptation to 'easier' problems than worst case.
- Tricks that can improve theoretical and practical properties:
 - Use smaller initial step-sizes, that go to zero more slowly.
 - Take a (weighted) average of the iterations or gradients:

$$\bar{\mathbf{x}}_t = \sum_{i=1}^t \omega_t \mathbf{x}_t, \quad \bar{\mathbf{d}}_t = \sum_{i=1}^t \delta_t \mathbf{d}_t.$$

Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:

- Rakhlin et at. [2011]:
 - Averaging later iterations achieves O(1/t) in non-smooth case.
- Nesterov [2007], Xiao [2010]:
 - Gradient averaging improves constants ('dual averaging').
 - Finds non-zero variables with sparse regularizers.
- Bach & Moulines [2011]:
 - $\alpha_t = O(1/t^{\beta})$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$.

Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:

- Rakhlin et at. [2011]:
 - Averaging later iterations achieves O(1/t) in non-smooth case.
- Nesterov [2007], Xiao [2010]:
 - Gradient averaging improves constants ('dual averaging').
 - Finds non-zero variables with sparse regularizers.
- Bach & Moulines [2011]:
 - $\alpha_t = O(1/t^{\beta})$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$.
- Nedic & Bertsekas [2000]:
 - Constant step size $(\alpha_t = \alpha)$ achieves rate of

$$\mathbb{E}[f(x^t)] - f(x^*) \le (1 - 2\mu\alpha)^t (f(x^0) - f(x^*)) + O(\alpha).$$

Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:

- Rakhlin et at. [2011]:
 - Averaging later iterations achieves O(1/t) in non-smooth case.
- Nesterov [2007], Xiao [2010]:
 - Gradient averaging improves constants ('dual averaging').
 - Finds non-zero variables with sparse regularizers.
- Bach & Moulines [2011]:
 - $\alpha_t = O(1/t^{\beta})$ for $\beta \in (0.5, 1)$ more robust than $\alpha_t = O(1/t)$.
- Nedic & Bertsekas [2000]:
 - Constant step size $(\alpha_t = \alpha)$ achieves rate of

$$\mathbb{E}[f(x^t)] - f(x^*) \le (1 - 2\mu\alpha)^t (f(x^0) - f(x^*)) + O(\alpha).$$

- Polyak & Juditsky [1992]:
 - In smooth case, iterate averaging is asymptotically optimal.
 - Achieves same rate as optimal stochastic Newton method.

- Should we use accelerated/Newton-like stochastic methods?
 - These do not improve the convergence rate.

Stochastic Newton Methods?

- Should we use accelerated/Newton-like stochastic methods?
 - These do not improve the convergence rate.
- But some positive results exist.
 - Ghadimi & Lan [2010]:
 - Acceleration can improve dependence on L and μ .
 - Improves performance at start or if noise is small.
 - Duchi et al. [2010]:
 - Newton-like methods can improve regret bounds.
 - Bach & Moulines [2013]:
 - Newton-like method achieves O(1/t) without strong-convexity.

(under extra self-concordance assumption)

Outline

- Motivation
- @ Gradient Method
- Stochastic Subgradient
- 4 Finite-Sum Methods
- Non-Smooth Objectives

Big-N Problems

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

Big-N Problems

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- Stochastic methods:
 - O(1/t) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.

Big-N Problems

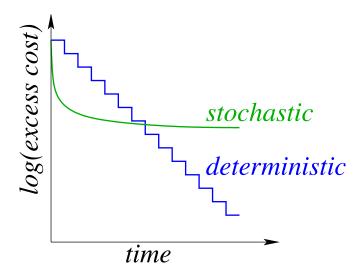
$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- Stochastic methods:
 - O(1/t) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
- Deterministic methods:
 - $O(\rho^t)$ convergence but requires N gradients per iteration.
 - The faster rate is possible because N is finite.

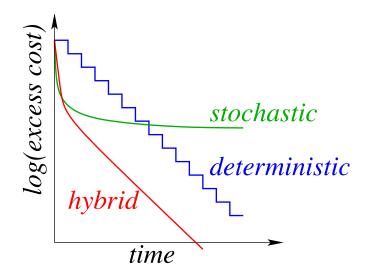
$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- Stochastic methods:
 - O(1/t) convergence but requires 1 gradient per iterations.
 - Rates are unimprovable for general stochastic objectives.
- Deterministic methods:
 - $O(\rho^t)$ convergence but requires N gradients per iteration.
 - The faster rate is possible because N is finite.
- For minimizing finite sums, can we design a better method?

Motivation for Hybrid Methods



Motivation for Hybrid Methods



Hybrid Deterministic-Stochastic

• Approach 1: control the sample size.

Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
- The FG method uses all N gradients,

$$\nabla f(x^t) = \frac{1}{N} \sum_{i=1}^{N} f_i(x^t).$$

• The SG method approximates it with 1 sample,

$$f_{i_t}(x^t) \approx \frac{1}{N} \sum_{i=1}^N f_i(x^t).$$

- Approach 1: control the sample size.
- The FG method uses all N gradients,

$$\nabla f(x^t) = \frac{1}{N} \sum_{i=1}^{N} f_i(x^t).$$

The SG method approximates it with 1 sample,

$$f_{i_t}(x^t) \approx \frac{1}{N} \sum_{i=1}^N f_i(x^t).$$

• A common variant is to use larger sample \mathcal{B}^t ,

$$\frac{1}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i'(x^t) \approx \frac{1}{N} \sum_{i=1}^N f_i(x^t).$$

Approach 1: Batching

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

• For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.

• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.
- Common to gradually increase the sample size $|\mathcal{B}^t|$. [Bertsekas & Tsitsiklis, 1996]

Approach 1: Batching

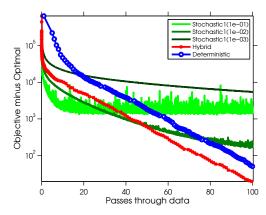
• The SG method with a sample \mathcal{B}^t uses iterations

$$x^{t+1} = x^t - \frac{\alpha^t}{|\mathcal{B}^t|} \sum_{i \in \mathcal{B}^t} f_i(x^t).$$

- For a fixed sample size $|\mathcal{B}^t|$, the rate is sublinear.
- Gradient error decreases as sample size $|\mathcal{B}^t|$ increases.
- Common to gradually increase the sample size $|\mathcal{B}^t|$. [Bertsekas & Tsitsiklis, 1996]
- We can choose $|\mathcal{B}^t|$ to achieve a linear convergence rate:
 - Early iterations are cheap like SG iterations.
 - Later iterations can use a Newton-like method.

Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:



- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES!

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \nabla f_i(x^t)$$

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^{N} \nabla f_i(x^t)$$

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1,2,\ldots,N\}$ and compute $f_{i_t}'(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \mathbf{y}_i^t$$

• **Memory**: $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected. [Le Roux et al., 2012]

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^t$$

- **Memory**: $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected. [Le Roux et al., 2012]
- Stochastic variant of increment average gradient (IAG). [Blatt et al., 2007]

- Growing $|\mathcal{B}^t|$ eventually requires O(N) iteration cost.
- Can we have a rate of $O(\rho^t)$ with only 1 gradient evaluation per iteration?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i_t from $\{1, 2, ..., N\}$ and compute $f'_{i_t}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^t$$

- **Memory**: $y_i^t = \nabla f_i(x^t)$ from the last t where i was selected. [Le Roux et al., 2012]
- Stochastic variant of increment average gradient (IAG). [Blatt et al., 2007]
- Assumes gradients of non-selected examples don't change.
- Assumption becomes accurate as $||x^{t+1} x^t|| \to 0$.

Convergence Rate of SAG

• If each f'_i is L—continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C,$$

where

$$C = [f(x^0) - f(x^*)] + \frac{4L}{N} ||x^0 - x^*||^2 + \frac{\sigma^2}{16L}.$$

Convergence Rate of SAG

• If each f_i' is L-continuous and f is strongly-convex, with $\alpha_t = 1/16L$ SAG has

$$\mathbb{E}[f(x^t) - f(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C,$$

where

$$C = [f(x^{0}) - f(x^{*})] + \frac{4L}{N} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

- Linear convergence rate but only 1 gradient per iteration.
 - For well-conditioned problems, constant reduction per pass:

$$\left(1 - \frac{1}{8N}\right)^N \le \exp\left(-\frac{1}{8}\right) = 0.8825.$$

• For ill-conditioned problems, almost same as deterministic method (but *N* times faster).

• Assume that N = 700000, L = 0.25, $\mu = 1/N$:

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2=0.99998$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761$.

- Assume that $\emph{N}=700000$, $\emph{L}=0.25$, $\emph{\mu}=1/\emph{N}$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{L}}) = 0.99761$.
 - SAG (N iterations) has rate $\left(1-\min\left\{\frac{\mu}{16L},\frac{1}{8N}\right\}\right)^N=0.88250.$

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1-\sqrt{\frac{\mu}{I}}\right)=0.99761.$
 - SAG (N iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+./\pi}\right)^2=0.99048.$

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1-\sqrt{\frac{\mu}{I}}\right)=0.99761.$
 - SAG (N iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2=0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $\left(1-\sqrt{\frac{\mu}{I}}\right)=0.99761.$
 - SAG (N iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).
- Number of f'_i evaluations to reach ϵ :

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2=0.99998.$
 - Accelerated gradient method has rate $(1-\sqrt{\frac{\mu}{I}})=0.99761.$
 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2=0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{u}(1/\epsilon))$.

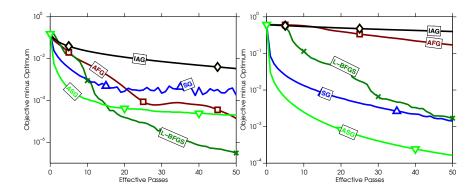
- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $(1-\sqrt{\frac{\mu}{r}})=0.99761$.
 - SAG (N iterations) has rate $\left(1-\min\left\{\frac{\mu}{16L},\frac{1}{8N}\right\}\right)^N=0.88250.$
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2=0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: $O(N_{\mu}^{L} \log(1/\epsilon))$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $(1-\sqrt{\frac{\mu}{r}})=0.99761$.
 - SAG (N iterations) has rate $\left(1-\min\left\{\frac{\mu}{16L},\frac{1}{8N}\right\}\right)^N=0.88250.$
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2=0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: $O(N_{\mu}^{L} \log(1/\epsilon))$.
 - Accelerated: $O(N\sqrt{\frac{L}{\mu}}\log(1/\epsilon))$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998$.
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{L}}) = 0.99761$.
 - SAG (N iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N).
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: $O(N_{\mu}^{L} \log(1/\epsilon))$.
 - Accelerated: $O(N\sqrt{\frac{L}{\mu}}\log(1/\epsilon))$.
 - SAG: $O(\max\{N, \frac{L}{n}\}\log(1/\epsilon))$.

Comparing Deterministic and Stochatic Methods

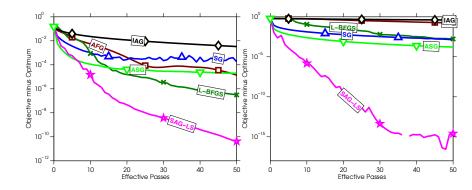
• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)



SAG Compared to FG and SG Methods

Finite-Sum Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)



- Newer stochastic algorithms are now available with linear rates:
 - Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
 - Incremental surrogate optimization [Mairal, 2013].
 - Stochastic variance-reduced gradient (SVRG)
 [Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al., 2013, Zhang et al., 2013]
 - SAGA [Defazio et al., 2014]

Other Linearly-Convergent Stochastic Methods

Finite-Sum Methods

- Newer stochastic algorithms are now available with linear rates:
 - Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
 - Incremental surrogate optimization [Mairal, 2013].
 - Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al., 2013, Zhang et al., 2013]
 - SAGA [Defazio et al., 2014]
- SVRG has a much lower memory requirement (later in talk).
- There are also non-smooth extensions (last part of talk).

SAG Implementation Issues

- Basic SAG algorithm:
 - while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f_i'(x)$.
 - $d = d y_i + f_i'(x)$.
 - $y_i = f_i'(x)$.
 - $x = x \frac{\alpha}{N}$.

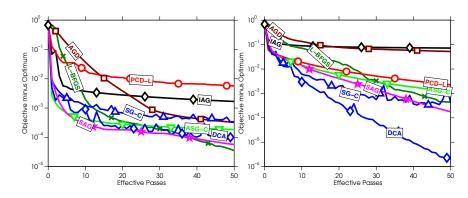
- Basic SAG algorithm:
 - while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f_i'(x)$.
 - $d = d y_i + f_i'(x)$.
 - $y_i = f_i'(x)$.
 - $x = x \frac{\alpha}{N}$.
- Practical variants of the basic algorithm allow:
 - Regularization.
 - Sparse gradients.
 - Automatic step-size selection.
 - Termination criterion.
 - Acceleration [Lin et al., 2015].

SAG Implementation Issues

- Basic SAG algorithm:
 - while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f_i'(x)$.
 - $d = d y_i + f_i'(x)$.
 - $\bullet \ y_i = f_i'(x).$
 - $\bullet \ \ x = x \tfrac{\alpha}{N}.$
- Practical variants of the basic algorithm allow:
 - Regularization.
 - Sparse gradients.
 - Automatic step-size selection.
 - Termination criterion.
 - Acceleration [Lin et al., 2015].
 - Adaptive non-uniform sampling [Schmidt et al., 2013]:
 - Sample gradients that change quickly more often.

SAG with Adaptive Non-Uniform Sampling

• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

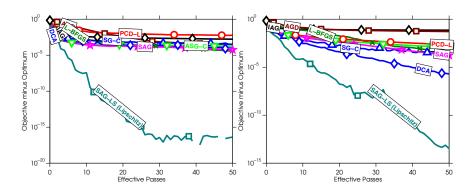


Datasets where SAG had the worst relative performance.

Finite-Sum Methods

SAG with Non-Uniform Sampling

• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)



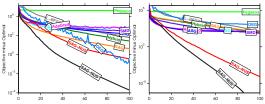
Lipschitz sampling helps a lot.

• A major disadvantage of SAG is the memory requirement.

- A major disadvantage of SAG is the memory requirement.
- There are several ways to avoid this:
 - Use mini-batches (only store gradient of the mini-batch).

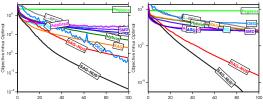
- A major disadvantage of SAG is the memory requirement.
- There are several ways to avoid this:
 - Use mini-batches (only store gradient of the mini-batch).
 - Use structure in the objective:
 - For $f_i(x) = L(a_i^T x)$, only need to store N values of $a_i^T x$.

- A major disadvantage of SAG is the memory requirement.
- There are several ways to avoid this:
 - Use mini-batches (only store gradient of the mini-batch).
 - Use structure in the objective:
 - For $f_i(x) = L(a_i^T x)$, only need to store N values of $a_i^T x$.
 - For CRFs, only need to store marginals of parts.



(optical character and named-entity recognition tasks)

- A major disadvantage of SAG is the memory requirement.
- There are several ways to avoid this:
 - Use mini-batches (only store gradient of the mini-batch).
 - Use structure in the objective:
 - For $f_i(x) = L(a_i^T x)$, only need to store N values of $a_i^T x$.
 - For CRFs, only need to store marginals of parts.



(optical character and named-entity recognition tasks)

• If the above don't work, use SVRG...

Finite-Sum Methods

Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x_0
- for s = 0, 1, 2...
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f'_i(x_s)$
 - $x^0 = x_s$

Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x_0
- for $s = 0, 1, 2 \dots$
 - $\bullet \ d_s = \frac{1}{N} \sum_{i=1}^N f_i'(x_s)$
 - $x^0 = x_s$
 - for t = 1, 2, ... m
 - Randomly pick $i_t \in \{1, 2, ..., N\}$
 - $x^t = x^{t-1} \alpha_t(f'_{i_t}(x^{t-1}) f'_{i_t}(x_s) + d_s).$
 - $x_{s+1} = x^t$ for random $t \in \{1, 2, ..., m\}$.

Stochastic Variance-Reduced Gradient

SVRG algorithm:

- Start with x_0
- for $s = 0, 1, 2 \dots$
 - $d_s = \frac{1}{N} \sum_{i=1}^{N} f_i'(x_s)$
 - $x^0 = x_s$
 - for t = 1, 2, ... m
 - Randomly pick $i_t \in \{1, 2, ..., N\}$
 - $x^t = x^{t-1} \alpha_t (f'_{i_t}(x^{t-1}) f'_{i_t}(x_s) + d_s).$
 - $x_{s+1} = x^t$ for random $t \in \{1, 2, ..., m\}$.

Requires 2 gradients per iteration and occasional full passes, but only requires storing d_s and x_s .

Outline

- Motivation
- 2 Gradient Method
- Stochastic Subgradien
- Finite-Sum Methods
- 5 Non-Smooth Objectives

Motivation: Sparse Regularization

• Recall the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

ullet Often, regularizer r is used to encourage sparsity pattern in x.

Motivation: Sparse Regularization

• Recall the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- Often, regularizer r is used to encourage sparsity pattern in x.
- For example, ℓ_1 -regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

• Regularizes and encourages sparsity in x

Motivation: Sparse Regularization

• Recall the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- Often, regularizer r is used to encourage sparsity pattern in x.
- ullet For example, ℓ_1 -regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x
- The objective is non-differentiable when any $x_i = 0$.
- Subgradient methods are optimal (slow) black-box methods.

• Recall the regularized empirical risk minimization problem:

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N L(x, a_i, b_i) + \lambda r(x)$$
data fitting term + regularizer

- Often, regularizer r is used to encourage sparsity pattern in x.
- For example, ℓ_1 -regularized least squares,

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|_1$$

- Regularizes and encourages sparsity in x
- The objective is non-differentiable when any $x_i = 0$.
- Subgradient methods are optimal (slow) black-box methods.
- Faster methods for specific non-smooth problems?

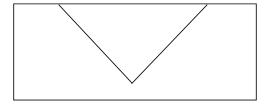
Smoothing Approximations of Non-Smooth Functions

- Smoothing: replace non-smooth f with smooth f_{ϵ} .
- Apply a fast method for smooth optimization.

Smoothing Approximations of Non-Smooth Functions

- Smoothing: replace non-smooth f with smooth f_{ϵ} .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

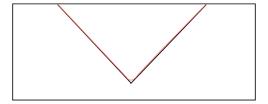
$$|x| \approx \sqrt{x^2 + \nu}.$$



Smoothing Approximations of Non-Smooth Functions

- Smoothing: replace non-smooth f with smooth f_{ϵ} .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$|x| \approx \sqrt{x^2 + \nu}.$$



- Smoothing: replace non-smooth f with smooth f_{ϵ} .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$|x| \approx \sqrt{x^2 + \nu}$$
.

Smooth approximation to the max function:

$$\max\{a,b\} \approx \log(\exp(a) + \exp(b))$$

Smooth approximation to the hinge loss:

$$\max\{0,x\}pprox egin{cases} 0 & x\geq 1 \ 1-x^2 & t < x < 1 \ (1-t)^2 + 2(1-t)(t-x) & x \leq t \end{cases}$$

Smoothing Approximations of Non-Smooth Functions

- Smoothing: replace non-smooth f with smooth f_{ϵ} .
- Apply a fast method for smooth optimization.
- Smooth approximation to the absolute value:

$$|x| \approx \sqrt{x^2 + \nu}$$
.

Smooth approximation to the max function:

$$\max\{a,b\} \approx \log(\exp(a) + \exp(b))$$

Smooth approximation to the hinge loss:

$$\max\{0, x\} \approx \begin{cases} 0 & x \ge 1 \\ 1 - x^2 & t < x < 1 \\ (1 - t)^2 + 2(1 - t)(t - x) & x \le t \end{cases}$$

 Generic smoothing strategy: strongly-convex regularization of convex conjugate.[Nesterov, 2005]

- Nesterov [2005] shows that:
 - Gradient method on smoothed problem has $O(1/\sqrt{t})$ subgradient rate.
 - Accelerated gradient method has faster O(1/t) rate.

- Nesterov [2005] shows that:
 - Gradient method on smoothed problem has $O(1/\sqrt{t})$ subgradient rate.
 - Accelerated gradient method has faster O(1/t) rate.
- In practice:
 - Slowly decrease level of smoothing (often difficult to tune).
 - Use faster algorithms like L-BFGS, SAG, or SVRG.

- Nesterov [2005] shows that:
 - Gradient method on smoothed problem has $O(1/\sqrt{t})$ subgradient rate.
 - Accelerated gradient method has faster O(1/t) rate.
- In practice:
 - Slowly decrease level of smoothing (often difficult to tune).
 - Use faster algorithms like L-BFGS, SAG, or SVRG.
- You can get the O(1/t) rate for $\min_x \max\{f_i(x)\}$ for f_i convex and smooth using *mirror-prox* method.[Nemirovski, 2004]
 - See also Chambolle & Pock [2010].

Converting to Constrained Optimization

• Re-write non-smooth problem as constrained problem.

Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem

$$\min_{x} f(x) + \lambda ||x||_{1},$$

is equivalent to the problem

$$\min_{x^+ \ge 0, x^- \ge 0} f(x^+ - x^-) + \lambda \sum_{i} (x_i^+ + x_i^-),$$

or the problems

$$\min_{-y \le x \le y} f(x) + \lambda \sum_{i} y_{i}, \quad \min_{\|x\|_{1} \le \gamma} f(x) + \lambda \gamma$$

Converting to Constrained Optimization

- Re-write non-smooth problem as constrained problem.
- The problem

$$\min_{x} f(x) + \lambda ||x||_{1},$$

is equivalent to the problem

$$\min_{x^+ \ge 0, x^- \ge 0} f(x^+ - x^-) + \lambda \sum_{i} (x_i^+ + x_i^-),$$

or the problems

$$\min_{-y \le x \le y} f(x) + \lambda \sum_{i} y_{i}, \quad \min_{\|x\|_{1} \le \gamma} f(x) + \lambda \gamma$$

• These are smooth objective with 'simple' constraints.

$$\min_{x \in \mathcal{C}} f(x)$$
.

Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

$$x^{t+1} = \operatorname*{argmin}_{y} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

Recall: gradient descent minimizes quadratic approximation:

$$x^{t+1} = \underset{y}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Consider minimizing subject to simple constraints:

$$x^{t+1} = \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} ||y - x^t||^2 \right\}.$$

Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

$$x^{t+1} = \underset{y}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

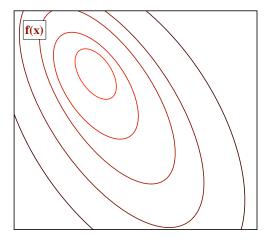
• Consider minimizing subject to simple constraints:

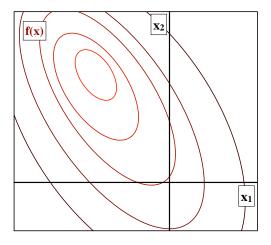
$$x^{t+1} = \underset{y \in \mathcal{C}}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} ||y - x^t||^2 \right\}.$$

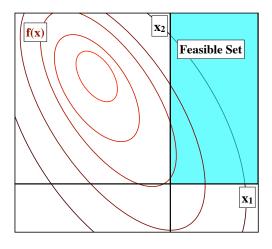
Equivalent to projection of gradient descent:

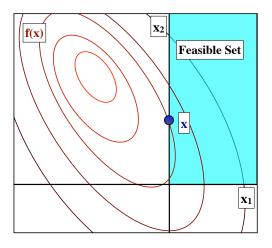
$$x_t^{GD} = x^t - \alpha_t \nabla f(x^t),$$

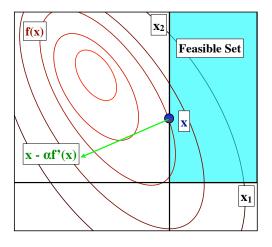
$$x^{t+1} = \underset{v \in \mathcal{C}}{\operatorname{argmin}} \left\{ \|y - x_t^{GD}\| \right\},$$

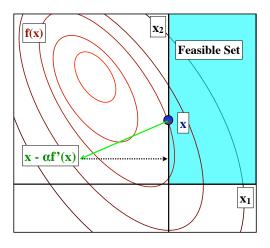


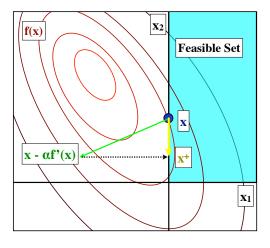












Discussion of Projected Gradient

Projected gradient has same rate as gradient method!

Discussion of Projected Gradient

- Projected gradient has same rate as gradient method!
- Can do many of the same tricks (i.e. line-search, acceleration, Barzilai-Borwein, SAG, SVRG).

- Projected gradient has same rate as gradient method!
- Can do many of the same tricks (i.e. line-search, acceleration, Barzilai-Borwein, SAG, SVRG).
- For projected Newton, you need to do an expensive projection under $\|\cdot\|_{H_{\star}}$.
 - Two-metric projection methods allow Newton-like strategy for bound constraints.
 - Inexact Newton methods allow Newton-like like strategy for optimizing costly functions with simple constraints.

Projections onto simple sets:

 $\bullet \ \operatorname{argmin}_{y \geq 0} \|y - x\| = \max\{x, 0\}$

- $\operatorname{argmin}_{y>0} \|y x\| = \max\{x, 0\}$
- $argmin_{I < y < u} ||y x|| = max\{I, min\{x, u\}\}$

- $\operatorname{argmin}_{v>0} \|y x\| = \max\{x, 0\}$
- $\operatorname{argmin}_{I < v < u} ||y x|| = \max\{I, \min\{x, u\}\}$
- $\operatorname{argmin}_{a^T v = b} \|y x\| = x + (b a^T x)a/\|a\|^2$.

- $\operatorname{argmin}_{v>0} \|y x\| = \max\{x, 0\}$
- $argmin_{I \le v \le u} ||y x|| = max\{I, min\{x, u\}\}$
- $\operatorname{argmin}_{a^T y = b} \|y x\| = x + (b a^T x)a/\|a\|^2$.

•
$$\operatorname{argmin}_{a^T y \ge b} \|y - x\| = \begin{cases} x & a^T x \ge b \\ x + (b - a^T x)a/\|a\|^2 & a^T x < b \end{cases}$$

Projections onto simple sets:

- $\operatorname{argmin}_{v>0} \|y x\| = \max\{x, 0\}$
- $argmin_{I \le v \le u} ||y x|| = max\{I, min\{x, u\}\}$
- $\operatorname{argmin}_{a^T y = b} \|y x\| = x + (b a^T x)a/\|a\|^2$.

•
$$\operatorname{argmin}_{a^T y \ge b} \|y - x\| = \begin{cases} x & a^T x \ge b \\ x + (b - a^T x)a/\|a\|^2 & a^T x < b \end{cases}$$

• $argmin_{\|y\| \le \tau} \|y - x\| = \tau x / \|x\|$.

- $\operatorname{argmin}_{v>0} \|y x\| = \max\{x, 0\}$
- $argmin_{I \le v \le u} ||y x|| = max\{I, min\{x, u\}\}$
- $\operatorname{argmin}_{a^T v = b} ||y x|| = x + (b a^T x)a/||a||^2$.

•
$$\operatorname{argmin}_{a^T y \ge b} \|y - x\| = \begin{cases} x & a^T x \ge b \\ x + (b - a^T x)a/\|a\|^2 & a^T x < b \end{cases}$$

- $\operatorname{argmin}_{\|y\| < \tau} \|y x\| = \tau x / \|x\|$.
- Linear-time algorithm for ℓ_1 -norm $||y||_1 \leq \tau$.

- $\operatorname{argmin}_{v>0} \|y x\| = \max\{x, 0\}$
- $argmin_{I < v \le u} ||y x|| = max\{I, min\{x, u\}\}$
- $\operatorname{argmin}_{a^T v = b} \|y x\| = x + (b a^T x)a/\|a\|^2$.

•
$$\operatorname{argmin}_{a^T y \ge b} \|y - x\| = \begin{cases} x & a^T x \ge b \\ x + (b - a^T x)a/\|a\|^2 & a^T x < b \end{cases}$$

- $\operatorname{argmin}_{\|y\| < \tau} \|y x\| = \tau x / \|x\|$.
- Linear-time algorithm for ℓ_1 -norm $||y||_1 \leq \tau$.
- Linear-time algorithm for probability simplex $y \ge 0, \sum y = 1$.

Projections onto simple sets:

- $\bullet \ \operatorname{argmin}_{y \ge 0} \|y x\| = \max\{x, 0\}$
- $\bullet \ \operatorname{argmin}_{I \leq y \leq u} \|y x\| = \max\{I, \min\{x, u\}\}$
- $\operatorname{argmin}_{a^T y = b} \|y x\| = x + (b a^T x)a/\|a\|^2$.

•
$$\operatorname{argmin}_{a^T y \ge b} \|y - x\| = \begin{cases} x & a^T x \ge b \\ x + (b - a^T x)a/\|a\|^2 & a^T x < b \end{cases}$$

- $\operatorname{argmin}_{\|y\| \le \tau} \|y x\| = \tau x / \|x\|.$
- Linear-time algorithm for ℓ_1 -norm $||y||_1 \le \tau$.
- Linear-time algorithm for probability simplex $y \ge 0, \sum y = 1$.
- Intersection of simple sets: Dykstra's algorithm.

We can solve large instances of problems with these constraints.

Proximal-Gradient Method

- A generalization of projected-gradient is Proximal-gradient.
- The proximal-gradient method addresses problem of the form

$$\min_{x} f(x) + r(x),$$

where f is smooth but r is a general convex function.

- A generalization of projected-gradient is Proximal-gradient.
- The proximal-gradient method addresses problem of the form

$$\min_{x} f(x) + r(x),$$

where f is smooth but r is a general convex function.

• Applies proximity operator of r to gradient descent on f:

$$\begin{aligned} x_t^{GD} &= x^t - \alpha_t \nabla f(x_t), \\ x^{t+1} &= \operatorname{argmin} \left\{ \frac{1}{2} \|y - x_t^{GD}\|^2 + \alpha r(y) \right\}, \end{aligned}$$

Proximal-Gradient Method

- A generalization of projected-gradient is Proximal-gradient.
- The proximal-gradient method addresses problem of the form

$$\min_{x} f(x) + r(x),$$

where f is smooth but r is a general convex function.

Applies proximity operator of r to gradient descent on f:

$$\begin{aligned} x_t^{GD} &= x^t - \alpha_t \nabla f(x_t), \\ x^{t+1} &= \operatorname*{argmin}_y \left\{ \frac{1}{2} \|y - x_t^{GD}\|^2 + \alpha r(y) \right\}, \end{aligned}$$

Equivalent to using the approximation

$$x^{t+1} = \underset{y}{\operatorname{argmin}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha} ||y - x^t||^2 + r(y) \right\}.$$

• Convergence rates are still the same as for minimizing f.

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_r[y] = \underset{x \in \mathbb{R}^P}{\operatorname{argmin}} \ r(x) + \frac{1}{2} \|x - y\|^2.$$

Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

$$\operatorname{prox}_r[y] = \underset{x \in \mathbb{R}^P}{\operatorname{argmin}} \ r(x) + \frac{1}{2} \|x - y\|^2.$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^{t+1} = \operatorname{softThresh}_{\alpha\lambda}[x^t - \alpha \nabla f(x^t)].$$

Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

$$\operatorname{prox}_r[y] = \underset{x \in \mathbb{R}^P}{\operatorname{argmin}} \ r(x) + \frac{1}{2} ||x - y||^2.$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^{t+1} = \operatorname{softThresh}_{\alpha\lambda}[x^t - \alpha\nabla f(x^t)].$$

• Example with $\lambda = 1$:

Input

Threshold

Soft-Threshold

$$\begin{bmatrix}
0.6715 \\
-1.2075 \\
0.7172 \\
1.6302 \\
0.4889
\end{bmatrix}$$

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_r[y] = \underset{x \in \mathbb{R}^P}{\operatorname{argmin}} \ r(x) + \frac{1}{2} \|x - y\|^2.$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^{t+1} = \mathsf{softThresh}_{\alpha\lambda}[x^t - \alpha \nabla f(x^t)].$$

• Example with $\lambda = 1$:

 $\begin{bmatrix} 0.6715 \\ -1.2075 \\ 0.7172 \\ 1.6302 \\ 0.4880 \end{bmatrix} \begin{bmatrix} 0 \\ -1.2075 \\ 0 \\ 1.6302 \\ 0 \end{bmatrix}$

Input

Threshold

Soft-Threshold

Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

$$\operatorname{prox}_r[y] = \underset{x \in \mathbb{R}^P}{\operatorname{argmin}} \ r(x) + \frac{1}{2} \|x - y\|^2.$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^{t+1} = \operatorname{softThresh}_{\alpha\lambda}[x^t - \alpha \nabla f(x^t)].$$

• Example with $\lambda = 1$:

Input	Threshold	Soft-Threshold
0.6715	[0]	[0]
-1.2075	-1.2075	-0.2075
0.7172	0	0
1.6302	1.6302	0.6302
0.4889		

Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases},$$

Projected-gradient methods are another special case:

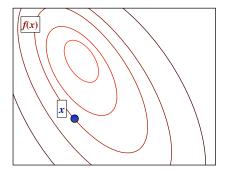
$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases},$$

$$x^{t+1} = \text{project}_{\mathcal{C}}[x^t - \alpha \nabla f(x^t)],$$

Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases},$$

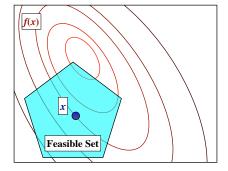
$$x^{t+1} = \operatorname{project}_{\mathcal{C}}[x^t - \alpha \nabla f(x^t)],$$



• Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases},$$

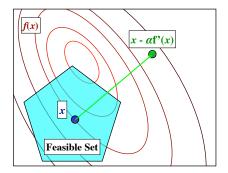
$$x^{t+1} = \operatorname{project}_{\mathcal{C}}[x^t - \alpha \nabla f(x^t)],$$



Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases},$$

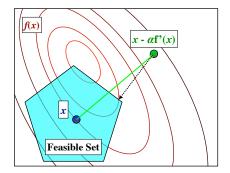
$$x^{t+1} = \operatorname{project}_{\mathcal{C}}[x^t - \alpha \nabla f(x^t)],$$



Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases},$$

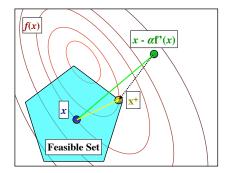
$$x^{t+1} = \operatorname{project}_{\mathcal{C}}[x^t - \alpha \nabla f(x^t)],$$



Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases},$$

$$x^{t+1} = \operatorname{project}_{\mathcal{C}}[x^t - \alpha \nabla f(x^t)],$$



• For what problems can we apply these methods?

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - **1** L1-Regularization.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - 1 L1-Regularization.
 - **②** Group ℓ_1 -Regularization.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - **1** L1-Regularization.
 - **②** Group ℓ_1 -Regularization.
 - Output
 Lower and upper bounds.
 - Small number of linear constraint.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Output
 Lower and upper bounds.
 - Small number of linear constraint.
 - Opening Probability Constraints.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bounds.
 - Small number of linear constraint.
 - Probability constraints.
 - 6 A few other simple regularizers/constraints.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bounds.
 - Small number of linear constraint.
 - Probability constraints.
 - 6 A few other simple regularizers/constraints.
- Can solve these non-smooth/constrained problems as fast as smooth/unconstrained problems!

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bounds.
 - Small number of linear constraint.
 - Probability constraints.
 - 6 A few other simple regularizers/constraints.
- Can solve these non-smooth/constrained problems as fast as smooth/unconstrained problems!
- We can again do many of the same tricks (line-search, acceleration, Barzilai-Borwein, two-metric projection, inexact proximal operators, SAG, SVRG).

Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

• Alternate between prox-like operators with respect to f and r.

Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \Leftrightarrow \min_{x=Ay} f(x) + r(y),$$

Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \quad \Leftrightarrow \quad \min_{x=Ay} f(x) + r(y),$$

$$\min_{x} f(x) + r(Bx) \Leftrightarrow \min_{y=Bx} f(x) + r(y).$$

Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \quad \Leftrightarrow \quad \min_{x=Ay} f(x) + r(y),$$

$$\min_{x} f(x) + r(Bx) \Leftrightarrow \min_{y=Bx} f(x) + r(y).$$

• If prox can not be computed exactly: Linearized ADMM.

Frank-Wolfe Method

In some cases the projected gradient step

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\},$$

may be hard to compute (e.g., dual of max-margin Markov networks).

Frank-Wolfe Method

In some cases the projected gradient step

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\},$$

may be hard to compute (e.g., dual of max-margin Markov networks).

Frank-Wolfe method simply uses:

$$\boldsymbol{x}^{t+1} = \operatorname*{argmin}_{\boldsymbol{y} \in \mathcal{C}} \left\{ f(\boldsymbol{x}^t) + \nabla f(\boldsymbol{x}^t)^T (\boldsymbol{y} - \boldsymbol{x}^t) \right\},$$

requires compact C, takes convex combination of x^t and x^{t+1} .

Frank-Wolfe Method

In some cases the projected gradient step

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\},$$

may be hard to compute (e.g., dual of max-margin Markov networks).

Frank-Wolfe method simply uses:

$$\boldsymbol{x}^{t+1} = \operatorname*{argmin}_{\boldsymbol{y} \in \mathcal{C}} \left\{ f(\boldsymbol{x}^t) + \nabla f(\boldsymbol{x}^t)^T (\boldsymbol{y} - \boldsymbol{x}^t) \right\},$$

requires compact C, takes convex combination of x^t and x^{t+1} .

- Iterate can be written as convex combination of vertices of \mathcal{C} .
- O(1/t) rate for smooth convex objectives, some linear convergence results for smooth and strongly-convex.[Jaggi, 2013]

Alternatives to Quadratic/Linear Surrogates

Mirror descent uses the iterations[Beck & Teboulle, 2003]

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x) + \nabla f(x)^{T} (y - x^{t}) + \frac{1}{2\alpha_{t}} \mathcal{D}(x^{t}, y) \right\},$$

where \mathcal{D} is a Bregman-divergence:

- $\mathcal{D} = \|x^t y\|^2$ (gradient method).
- $\mathcal{D} = \|x^t y\|_H^2$ (Newton's method).
- $\mathcal{D} = \sum_{i} x_{i}^{t} \log(\frac{x_{i}^{t}}{y_{i}}) \sum_{i} (x_{i}^{t} y_{i})$ (exponentiated gradient).

Alternatives to Quadratic/Linear Surrogates

Mirror descent uses the iterations[Beck & Teboulle, 2003]

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x) + \nabla f(x)^{T} (y - x^{t}) + \frac{1}{2\alpha_{t}} \mathcal{D}(x^{t}, y) \right\},$$

where \mathcal{D} is a Bregman-divergence:

- $\mathcal{D} = \|x^t y\|^2$ (gradient method).
- $\mathcal{D} = \|x^t y\|_H^2$ (Newton's method).
- $\mathcal{D} = \sum_{i} x_{i}^{t} \log(\frac{x_{i}^{t}}{y_{i}}) \sum_{i} (x_{i}^{t} y_{i})$ (exponentiated gradient).
- Mairal [2013,2014] considers general surrogate optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ g(y) \right\},\,$$

where g upper bounds f, $g(x^t) = f(x^t)$, $\nabla g(x^t) = \nabla f(x^t)$, and $\nabla g - \nabla f$ is Lipschitz-continuous.

• Get O(1/k) and linear convergence rates depending on g - f.

Dual Methods

- Stronly-convex problems have smooth duals.
- Solve the dual instead of the primal.

Dual Methods

- Stronly-convex problems have smooth duals.
- Solve the dual instead of the primal.
- SVM non-smooth strongly-convex primal:

$$\min_{x} C \sum_{i=1}^{N} \max\{0, 1 - b_{i} a_{i}^{T} x\} + \frac{1}{2} ||x||^{2}.$$

SVM smooth dual:

$$\min_{0 \le \alpha \le C} \frac{1}{2} \alpha^T A A^T \alpha - \sum_{i=1}^{N} \alpha_i$$

- Smooth bound constrained problem:
 - Two-metric projection (efficient Newton-liked method).
 - Randomized coordinate descent (part 2 of this talk).

Summary

Summary:

- Part 1: Convex functions have special properties that allow us to efficiently minimize them.
- Part 2: Gradient-based methods allow elegant scaling with dimensionality of problem.
- Part 3: Stochastic-gradient methods allow scaling with number of training examples, at cost of slower convergence rate.
- Part 4: For finite datasets, SAG fixes convergence rate of stochastic gradient methods, and SVRG fixes memory problem of SAG.
- Part 5: These building blocks can be extended to solve a variety of constrained and non-smooth problems.